Sub-Index

Sample Pages (Excerpts) IndexPurchase Book

Chapter 2 Table of Contents Page No.
2.0 Introduction 4
2.1 Units of measurement 4
2.1.1 General 4
2.1.2 SI Terminology 4
2.1.3 Imperial Terminology 5
2.1.4 Stream Flowrates 6
2.1.5 Standard Conditions 6
2.1.6 Generic Site Considerations 7
2.2 Design Codes and Recommended Practices 8
2.2.1 List of Standards Organizations by Equipment Categories 8
2.2.2 List of Major Codes and Standards 11
2.3 Simulations and process design 15
2.3.1 Types of Simulations 15
2.3.2 Components of a Simulator 18
2.3.3 Simulation Programs 18
2.3.4 Basic Steps and Decisions for Simulation 18
2.3.4.1 The Basic Steps of a Simulation Study 18
2.3.4.2 Decisions for Simulating 19
2.3.4.3 Steps and Decisions for Conducting a Simulation Study 20
2.3.4.4 The phases of making a simulation file 21
2.3.4.5 Flow sheeting 22
2.3.4.6 Modelling Levels 22
2.3.4.7 Calculation steps 23
2.3.5 Recommended Property Packages and Methods 24
2.3.5.1 Oils and Hypotheticals 25
2.3.5.2 Feed Conditions and Product Specifications 28
2.4 Design conditions for equipment and piping 30
2.4.1 Design Pressure 30
2.4.2 Design Temperature 31
2.4.3 Design Margins 33
2.4.4 Manning Philosophy 34
2.4.5 Software utilized by Process Engineers 35
2.5 Fluid Property Calculation Methods 35
2.5.1 Characterization properties 36
2.5.2 Pure Substance Properties 42
2.5.3 Ideal gas properties 45
2.5.4 Bulk (PVT) properties of fluids 48
2.5.5 Transport properties 51
2.5.6 Phase Equilibrium Properties 57
2.5.6.1 Phase behavior and phase diagrams 57
2.5.6.2 PVT phase diagrams 58
2.5.6.3 Compositional phase diagrams 60
2.5.6.4 Fugacity and fugacity coefficient 64
2.5.6.5 Activity and activity coefficient 65
2.5.6.6 Vapor-liquid equilibrium calculation 66
2.5.6.7 Standard state fugacity 67
2.5.6.8 Vapor-Liquid Equilibrium Computation Methods 70
2.6 Dimensionless Numbers used in Process Engineering 73
2.7 Thermodynamics 81
2.7.1 System models 82
2.7.2 Interactions of thermodynamic systems 83
2.7.3 Homogeneous and Heterogeneous system 83
2.7.4 Types of ThermodynamicSystems 84
2.7.5 Macroscopic System 85
2.7.6 States and Processes 85
2.7.6.1 Thermodynamic Equilibrium 86
2.7.6.2 Process 87
2.7.6.3 Extensive and Intensive Properties 88
2.7.6.4 Work and Heat 88
2.7.7 Reversible and Irreversible processes 90
2.7.8 Change of Phase 92
2.7.8.1 Saturation 92
2.7.8.2 Saturated and Subcooled Liquids 92
2.7.8.3 Quality 93
2.7.8.4 Moisture Content 93
2.7.8.5 Saturated and Superheated Vapors 94
2.7.8.6 Constant Pressure Heat Addition 94
2.7.8.7 Critical Point 94
2.7.8.8 Fusion 95
2.7.8.9 Sublimation 95
2.7.8.10 Triple Point 95
2.7.8.11 Condensation 96
2.7.9 Property Diagrams 96
2.7.10 Thermodynamic Definitions 101
2.8 Stoichiometry 108
2.8.1 Glossary in Stoichiometry 116
2.9 Reaction Chemistry and Reactors 119

2.10 Units Conversion in Process Engineering 124
2.11 References 138
Chapter 3 Table of Contents Page No.
3.1 Introduction 4
3.1.1 Pump Related Important References 4
3.2 International Standards 4
3.2.1 Centrifugal Pump Standards 4
3.2.2 Positive Displacement Pump Standards 5
3.3 Definitions 7
3.4 Abbreviations 8
3.5 Overall Pump Options 10
3.6 Centrifugal Pumps 13
3.6.1 Principle of Operation 14
3.6.2 Head Produced by a Centrifugal Pump 15
3.6.3 Mechanical Components of centrifugal pump 16
3.6.4 Head versus Flow Characteristic for centrifugal pump 17
3.6.5 System Resistance 18
3.6.6 Centrifugal Pump Design Parameters 20
3.6.6.1 Maximum Capacity 20
3.6.6.2 Cut-off Flow 21
3.6.6.3 Minimum Flow 21
3.6.6.4 Pump Power, Differential Head and Efficiency 25
3.6.7 Impellers for Centrifugal pumps 30
3.6.8 Stream Specific Gravity (Multiple Fluids) 32
3.6.9 Pump Shutoff Head 33
3.6.10 Overall Pump Performance 33
3.6.11 Influence of Liquid Properties 33
3.6.12 Impeller Specific Speed for centrifugal pumps 36
3.6.13 Pump Suction Specific Speed 37
3.6.14 Net Positive Head 39
3.6.14.1 NPSHa Calculations for High Vapor Pressure Fluids 42
3.6.15 Flow rate for a fixed temperature rise 44
3.6.16 Cavitation 45
3.6.17 Variable Speed / Frequency Driver Selection 47
3.6.18 Parallel vs. Series Centrifugal Pump Operation 48
3.6.18.1 Parallel Pump Operation 48
3.6.18.2 Series Pump Operation 50
3.6.19 Centrifugal Pump Affinity Laws (also called Fan Laws) 53
3.6.20 Pump Sparing 54
3.6.21 Centrifugal Pump Cooling Water Requirement 55
3.6.22 Typical Centrifugal Pump Models available in Industry 55
3.6.23 Centrifugal Pump Process Calculations 59
3.6.24 Performance Curves 62
3.6.25 Centrifugal Pump Types in CPI 65
3.6.25.1 Horizontal Single Stage Process Pump 68
3.6.25.2 Between-Bearings Impeller Centrifugal Pumps 69
3.6.25.3 Double Suction versus Single Suction Pumps 70
3.6.25.4 Radial Split Case versus Axial Split Case Pumps 72
3.6.25.5 Vertical Inline Pump 72
3.6.25.6 Vertical Sump Pump 74
3.6.25.7 Horizontal Multi-Stage Pump 76
3.6.25.8 Vertical Canned Barrel Pump 79
3.6.25.9 High Speed Centrifugal Pump 80
3.6.25.10 Sealless Canned Style Pumps 82
3.6.25.11 Barrel Unloading centrifugal pumps 83
3.6.25.12 Hydraulic Power Recovery Turbine (HPRT) 84
3.6.25.13 Self Priming Centrifugal Pumps 85
3.6.25.14 Submersible Pumps 86
3.6.25.15 Vertical Multistage Pump 88
3.6.25.16 Jet Pumps 91
3.7 Positive Displacement Pumps 92
3.7.1 Reciprocating Positive Displacement Pumps 93
3.7.1.1 Metering Diaphragm Pumps 93
3.7.1.2 Reciprocating Metering Pumps 95
3.7.2 Rotary Positive Displacement Pumps 103
3.7.3 Screw Pumps 104
3.7.4 Gear Pumps 107
3.7.5 Peristaltic pumps (Hose pumps) 109
3.7.6 Progressive Cavity Pump 109
3.7.7 Sliding Vane Pump 110
3.7.8 Flexible Impeller Pump 111
3.7.9 Lobe Type Pump 111
3.7.10 Performance curve for Positive displacement pumps 112
3.7.11 Process Calculations for Reciprocating pumps 117
3.7.12 Net Positive Suction Head (NPSH) 119
3.8 CENTRIFUGAL PUMP Seal Selection and Seal Chamber 120
3.8.1 API Seal Flushing Plans 122
3.8.2 Quenching 137
3.9 Control of Pumps 144
3.9.1 Centrifugal Pumps 144
3.9.1.1 Optional Features for Centrifugal Pumps 141
3.9.2 Control of Positive Displacement Pumps 147
3.10 Process Datasheet Sheet of Pumps 149
3.10.1 Pump Specification Sheet 149
3.10.2 Capacity 150
3.10.3 Minimum Required Flow (For Centrifugal Pumps Only) 150
3.10.4 Suction Pressure 150
3.10.5 Discharge Pressure 151
3.10.6 NPSH 151
3.10.7 Power Requirements 153
3.10.8 Pump Efficiency 153
3.10.9 Stream Properties 153
3.11 Examples for Pump Calculations 156
3.12 Centrifugal Pump Glossary 175
3.13 Glossary For Positive Displacement Pumps 178
3.14 References 181
Chapter 4 Table of Contents Page No.
4.1 Introduction 4
4.1.1 Compressors related important references 4
4.1.2 Industry Codes and Standards 4
4.2 Compressor Types 5
4.3 Compressor Selection 6
4.4 Centrifugal / Axial Compressor Selection 11
4.4.1 Advantages Attributed to Centrifugal Compressors 11
4.4.2 Limitations of Centrifugal Compressors 12
4.4.3 Axial Compressor Advantages 13
4.4.4 Axial Compressor Disadvantages 13
4.4.5 Dynamic compressor components and functions 16
4.4.6 Thermodynamic Equations for Gas Compression 18
4.4.7 Head Calculation 20
4.4.8 Polytropic Efficiency 21
4.4.9 Compressor Discharge Temperature 22
4.4.10 Power Requirements 22
4.4.11 Mollier Diagram Method 23
4.4.11.1 Application of Mollier Diagram 24
4.4.12 Casing Arrangements 28
4.4.13 Performance Curves for Centrifugal and Axial Compressors 30
4.4.13.1 Actual Volume 32
4.4.14 Fan Laws 33
4.4.15 Axial Compressor Basic Theory 34
4.4.16 Efficiency of an Operating Machine 34
4.4.17 Example of calculation of gas properties 37
4.4.18 Centrifugal Compressor Calculation Examples 42
4.4.19 Axial Compressors Sizing Example 46
4.4.20 Glossary for Centrifugal / Axial Compressor 49
4.5 Reciprocating Compressor Selection 52
4.5.1 Principle of Operation 52
4.5.2 Lubrication 56
4.5.3 Advantages Attributed to Reciprocating Compressors 58
4.5.4 Limitations of Reciprocating Compressors 58
4.5.5 Pulsation Control in Reciprocating compressors 60
4.5.6 Performance Calculations for Reciprocating compressor 60
4.5.6.1 Intercoolers 62
4.5.6.2 Volumetric Efficiency 62
4.5.6.3 Power Calculation for reciprocating compressor 65
4.5.6.4 Typical Compression ratios 67
4.5.6.5 Size ratings for reciprocating compressors 68
4.5.7 Reciprocating Compressor Calculations 68
4.5.8 Glossary for Reciprocating Compressor 77
4.6 Rotary Compressor Selection 80
4.6.1 Rotary compressors- general design considerations 86
4.7 Specialized Compression Equipment 92
4.7.1 Ejectors 92
4.7.2 Diaphragm Compressor 92
4.7.3 Scroll Compressor 93
4.8 Miscellaneous Parts for Compressors 95
4.8.1 Couplings 95
4.8.2 Gears 98
4.8.3 Bearings 99
4.8.3.1 Bearing Lubrication 101
4.8.4 Packing Glands 105
4.8.5 Compressor Seals 105
4.8.6 Vibration Monitoring Techniques 112
4.9 Definitions and Formulae 114
4.10 Process Datasheet Preparation 118
4.10.1 Design Cases 119
4.10.2 Specification of Overdesign Factor 119
4.10.3 Fluid Properties 119
4.10.4 Setting Compression Ratios 120
4.10.5 Process Staging 120
4.10.6 Compressor Efficiency 121
4.10.7 Sparing Philosophy 121
4.10.8 Design Pressure and Temperature 122
4.11 Process Control 123
4.11.1 Centrifugal Compressors 123
4.11.1.1 Phenomena of Surge in Centrifugal compressors 123
4.11.1.2 Antisurge Control for Compressed Air Centrifugal Compressors 130
4.11.1.3 Stonewall 131
4.11.1.4 Centrifugal Compressor Control 131
4.11.2 Axial Compressor Control 137
4.11.3 Reciprocating Compressors Process Control 140
4.11.4 Screw Compressors Process Control 141
4.12

Determination of Design Pressure in Centrifugal
Compressor System

143

4.13 References

149
Chapter 5 Table of Contents Page No.
5.0 Introduction 3
5.1 Fans / Blowers Related Important References 3
5.2 Fan / Blower Terminology 3
5.2.1 Total Pressure versus Static Pressure 5
5.3 Performance of Fans / Blowers 6
5.3.1 Performance Curve of Fan / Blowers 6
5.3.2 System Characteristics 9
5.3.3 Fan Characteristics 9
5.3.4 System Characteristics and Fan Curves 10
5.4 Classification of Fans / Blowers 12
5.4.1 Axial Flow Fans 14
5.4.2 Centrifugal Fans 19
5.4.3 Centrifugal Blower 22
5.4.4 Drive Arrangement 23
5.4.5 Comparison amongst Various Centrifugal Fan Types 24
5.4.5.1 Fan Design and Selection 24
5.4.5.2 Fan Performance and Efficiency 24
5.4.5.3 Centrifugal Fans / Blowers with AF Blades 26
5.4.5.4 Centrifugal Fans / Blowers with BC and BI Blades 27
5.4.5.5 Centrifugal Fans / Blowers with Radial Tip Blades (RT) 29
5.4.5.6 Centrifugal Fans / Blowers with Forward Curved (FC) Blades 30
5.4.5.7 Pressure Blowers, Turbo Blowers 33
5.4.5.8 Axial-Centrifugal Fan / Blowers 34
5.4.5.9 Vortex Blowers 35
5.5 Process Control of Fan / Blowers 42
5.5.1 Series and Parallel Operation 44
5.5.2 Factors to be considered in the Selection of Flow Control Methods 46
5.5.3 Comparisons of Similar Fans & Blowers 50
5.6 Process Calculation for Fans / Blowers 54
5.7 Process Data Sheet for Fans & Blowers 55
5.8 Technical Bid Analysis 57
5.9 Fans & Blower Glossary 58
5.10 References 59
Chapter 6 Table of Contents Page No.
6.1 Introduction 4
6.1.1 Heat Exchanger related important references 4
6.2 Basic Heat Transfer Fundamentals 4
6.3 Types of Heat Exchangers 6
6.4 Shell & Tube Type Heat Exchangers 18
6.4.1 TEMA Types 18
6.4.2 Heat Transfer Equipment Overdesign 24
6.4.3 Number of Shells 24
6.4.4 Parts identification in various Shell & tube heat exchangers 25
6.4.5 Tube Type 28
6.4.6 Tube Length 28
6.4.7 Tube Diameter and Wall Thickness 28
6.4.8 Ferrules 29
6.4.9 Tube Layout 29
6.4.9.1 Tube Pitch 30
6.4.10 Cross Baffles 31
6.4.10.1 Baffle Cut 32
6.4.11 Seal Strips 36
6.4.12 Impingement Protection 36
6.4.13 Vapor Distribution Belt 37
6.4.14 Tube Side Flow 37
6.4.15 Fouling Factors 38
6.4.16 Pressure Drop Allowances 43
6.4.17 Steam as a Heating Medium 44
6.4.18 Pinch Analysis for Exchanger Networks 45
6.4.19 Vibration 46
6.5 Data Sheet Preparation for S&T Exchanger 48
6.5.1 Selection of Design Case 48
6.5.2 Specification of Overdesign Factor 48
6.5.3 Fluid Properties 48
6.5.4 Heating Curves 48
6.5.5 Design Pressure and Temperature 48
6.5.6 Supplemental Design Notes 48
6.5.7 Preliminary Overall Heat Transfer Coefficients 49
6.6 Air Cooled Heat Exchangers (ACHE) 56
6.6.1 Cooling Water vs. Air Cooling 56
6.6.2 Advantages of Air Coolers 56
6.6.3 Disadvantages / Limitations of Air Coolers 57
6.6.4 Design Data for ACHE 57
6.6.5 Specific Design Considerations for Air Coolers 58
6.6.6 Air Cooler arrangements 60
6.6.7 Tube Side Design 63
6.6.8 Air Cooled Heat Exchanger Sizing and Optimization 64
6.6.9 Basics of Air Cooled Heat Exchangers 67
6.6.9.1 Components 67
6.6.9.2 Tube Bundle 68
6.6.9.3 Fins 69
6.6.9.4 Header Design 72
6.6.9.5 Header Piping 74
6.6.9.6 Axial Flow Fans 76
6.6.9.7 Plenum 77
6.6.9.8 Mechanical Equipment 77
6.6.9.9 Structure 78
6.6.9.9 Structure 78
6.6.9.11 Thermal Design 79
6.6.9.12 Typical Overall heat transfer coefficient 79
6.6.9.13 Fan Selection – Horsepower Requirements 81
6.6.10 Performance Control of ACHEs 82
6.6.11 Air Cooler Location 88
6.6.12 Design of ACHEs for Viscous Liquids 88
6.6.13 Datasheet Preparation for Air Cooled Heat Exchanger 91
6.6.13.1 Selection of Design Case 91
6.6.13.2 Specification of Overdesign Factor 91
6.6.13.3 Fluid Properties 92
6.6.13.4 Cooling Curves 92
6.6.13.5 Design Pressure and Temperature 92
6.6.13.6 Supplemental Design Notes 92
6.6.14 References 93
Chapter 7 Table of Contents Page No.
7.1 Introduction 3
7.1.1 Related important references 3
7.2 Pressure Vessels 3
7.2.1 Definition 3
7.2.2 Types of equipment coming under pressure vessel category 3
7.2.3 Codes and Standards 3
7.2.3.1 Pressure Vessel codes of few countries 4
7.2.3.2 ASME Section I 6
7.2.3.3 ASME Section VIII Division I 6
7.2.3.4 ASME Section VIII Division II 7
7.2.3.5 ASME Section VIII, Division III 7
7.2.3.6 ANSI CODE 7
7.2.3.7 Non-Code Vessels 8
7.3 Process Engineer’s Role 8
7.4 Storage Tanks 11
7.4.1 Definitions 11
7.4.2 Specifying Storage Requirements 11
7.4.3 Tank Services 12
7.4.4 Classification of Products 13
7.4.5 Tank Types 13
7.4.5.1 Low Pressure Storage Tanks 14
7.4.5.2 Floating Roof Tanks 18
7.4.5.3 Spheres and Bullets 22
7.4.5.4 Refrigerated / Cryogenic Storage 24
7.4.5.5 Mounded Bullets 31
7.4.6 Guidelines for Location and Spacing 33
7.4.7 General Appurtenances 33
7.4.7.1 Nozzles 33
7.4.7.2 Tank Heating 33
7.4.7.3 Protective Coatings 34
7.4.7.4 Tank Mixing 34
7.4.7.5 Draw-Off Sump 39
7.4.8 Tank Breathing 39
7.4.8.1 Determination of Normal Vacuum/Venting Capacities 40
7.4.8.2 Determination of Pressure Set Points on Blanketed Tanks 41
7.4.8.3 Determination of Emergency Venting Capacity 43
7.4.8.4 Pressure/vacuum valves for Floating Roof Tanks 43
7.4.9 Safety Considerations 46
7.4.10 Design Considerations for Tankfarm Layout 47
7.4.11 Corrosion Allowance 54
7.4.12 Sizing 54
7.4.13 Process Datasheet Preparation 54
7.5 References 58
Chapter 8 Table of Contents Page No.
8.1 Introduction 6
8.1.1 Fractionation and Absorber related references 6
8.2 Distillation fundamentals 6
8.2.1 Process Design Software 6
8.2.2 Hydraulic Design 6
8.2.3 Distillation 6
8.2.4 Relative Volatility () 7
8.3 Process Design 10
8.4 Selection of Trays and Packing 11
8.4.1 Packings versus Trays 11
8.4.2 Packed towers 12
8.4.3 Trayed Towers 12
8.4.4 Tray and Packing characteristics 13
8.5 Design of Trayed Columns 14
8.5.1 Noteworthy Point 15
8.6 The Design of a Distillation Column 16
8.6.1 Selection of Key Components in Feed 17
8.6.1.1 Relative volatility of binary liquid mixtures 17
8.6.1.2 Relative volatility of multi-component mixtures 18
8.6.1.3 Effect of temperature or pressure on relative volatility 18
8.6.2 Understanding the Nature of Chemical Constituents 20
8.6.3 Establishing the design basis of distillation 20
8.6.4 Selection of operating pressure of column 21
8.7 Binary Fractionation 25
8.7.1 Nomenclature and Subscripts 25
8.7.2 Tools for Distillation Analysis 26
8.7.3 Envelope Technique 26
8.7.3.1 Binary Distillation Material Balances 27
8.8. Equilibrium 29
8.8.1 Concept 29
8.8.2 Equilibrium Line Equations 30
8.8.3 Non-Ideal Systems 31
8.9 McCabe-Thiele Diagram 32
8.9.1 Introduction 32
8.9.2 Equilibrium Curve 33
8.9.3 Operating Lines 33
8.9.4 Physical Meaning of Points on McCabe-Thiele 34
8.9.4.1 Feed Conditions 35
8.9.4.2 Feed Tray 36
8.9.5 Minimum Reflux/Infinite Trays 38
8.10 Ruheman-Ponchon-Savarit Graphical Method 39
8.10.1 Distillation in Enriching Section of Tower 40
8.10.2 Distillation in Stripping Section of Tower 41
8.10.2.1 Rectifying section 42
8.10.2.2 Stripping section 43
8.11 Analytical Techniques 46
8.11.1 Minimum Reflux/Infinite Trays 46
8.11.2 Minimum Trays/Total Reflux 47
8.11.3 Feed Tray 47
8.11.4 Design Reflux and Trays 49
8.12 Tray Efficiency 50
8.13 Multi-Component Distillation Design 50
8.13.1 Introduction 50
8.13.2 Shortcut Method in Multicomponent Distillation 51
8.13.3 Rigorous Multicomponent Distillation Methods 52
8.13.4 Columns Sequencing Approach for Multicomponent distillation 53
8.13.5 Tray-To-Tray Calculation Approach for Multicomponent Distillation 54
8.13.5.1 Minimum Reflux and Trays 55
8.13.5.2 Design Parameters 56
8.13.5.3 Tray–to–Tray Calculation 60
8.13.5.4 Constant Molal Overflow Procedure 62
8.13.5.5 Procedure with Heat Balance 62
8.14 Absorption and Stripping 64
8.15 Absorbers and Strippers – Simplified Kremser Approach 78
8.15.1 Absorber or stripper with components in lean oil or stripping gas 79
8.16 Efficiency 82
8.17 Designing a Column 83
8.18 Tray Sizing 84
8.18.1 Preliminary Diameter Estimate 85
8.18.2 Tray Spacing 85
8.18.3 Number of Passes 86
8.18.4 Swaging of Towers 86
8.19 Steam Distillation 87
8.20 Column Internal Design Guidelines 93
8.20.1 Selecting the Controlling Case 94
8.20.2 Tray Count and Tower Layout 95
8.20.3 Types of trays 95
8.20.3.1 Overview of Choice of Column Internals 96
8.20.4 Hydraulic Parameters 105
8.20.4.1 Jet Flooding 106
8.20.4.2 Downcomer Backup 107
8.20.5 Geometric Parameters 111
8.20.5.1 Tray Configurations 111
8.20.5.2 One Pass Tray 112
8.20.5.3 Two Pass Tray 113
8.20.5.4 Three Pass Trays 114
8.20.5.5 Four Pass Tray 115
8.20.5.6 Discussion on Tray Configurations 117
8.20.5.7 Tray Action 118
8.20.5.8 Weir Height, Length, Type and Swept Back Weirs 118
8.20.6 Important Formulae Used in Sieve and Valve Trays Design 126
8.20.6.1 Downcomer Backup – Clear Liquid 126
8.20.6.2 Aerated Downcomer Backup 126
8.20.6.3 Total Tray or Wet Tray Pressure Drop 126
8.20.6.4 Weir Crest 127
8.20.6.5 Head Loss under Downcomer 127
8.20.6.6 Throw over Weir 128
8.20.6.7 Anti-Jump Baffles 128
8.20.6.8 Zf and Zh 128
8.20.6.9 Special Considerations for Four-Pass Tray Designs 128
8.20.7 Feed and Draw for Trayed Towers 129
8.20.7.1 Nozzle Sizing 129
8.20.7.2 Reboilers and Bottom Compartments 164
8.20.7.2.1 Reboiler Types 164
8.20.8 Tower Bottom Arrangements 168
8.20.8.1 Flow classifications 168
8.20.8.2 Reboiler Compartments 174
8.20.9 Other Topics 214
8.21 Tray Efficiencies and Turndown 222
8.21.1 Tray Efficiencies 222
8.21.2 Murphree Efficiency 222
8.21.3 Overall Efficiency 223
8.21.4 Derating (‘system’) factors 227
8.21.5 Turndown 229
8.21.6 Tray hydraulic design procedure and guidelines 230
8.21.7 Tips on Balancing Trays 231
8.22 Flow regimes 231
8.22.1 Stability Limits 232
8.23 Tower System Design Pressure, Temperature Determination 235
8.23.1 Approach to Determining Design Pressure & Temperature 236
8.24 Packed Columns 237
8.24.1 Design of Packed Columns 237
8.24.2 Packed Tower Sizing Strategy 244
8.24.3 Example of Bid Evaluation Report for Packed Tower 244
8.25 Tower Packings 250
8.25.1 Random Packings 250
8.25.2 Structured Packings 256
8.25.3 Grid Packings 258
8.25.4 Packing Selection 259
8.25.5 Packing Hydraulics 261
8.25.5.1 Minimum Wetting Rates 261
8.25.5.2 Loading and Flooding 262
8.25.5.3 Pressure Drop 263
8.25.5.4 Liquid Holdup 265
8.25.5.5 Minimum Vapor Rate 266
8.25.5.6 Foaming and Safety Factor 266
8.25.5.7 Other Considerations 266
8.25.5.8 Material and Thickness of Packings 267
8.25.6 Random Packing Efficiency 267
8.25.6.1 Concepts of Packing Efficiency 267
8.25.6.2 Procedure of Random Packing Efficiency Estimate 269
8.25.6.3 Data of Packing Efficiency 269
8.25.6.4 F.R.I. Models for Random Packing Efficiency 272
8.25.6.5 Rules-of-Thumb 274
8.25.6.6 Design Considerations of Random Packing HETP 275
8.25.6.7 Structured Packing Efficiency 276
8.25.6.8 Data of Structured Packing Efficiencies 278
8.25.6.9 Rules of Thumb for HETP for structured packing 278
8.25.6.10 Factors Affecting HETP of Structured Packings 281
8.25.6.11 General Considerations of Structured Packing HETP 282
8.25.6.12 General Considerations of Structured Packing HETP 283
8.26 Liquid Distribution 283
8.26.1 Liquid Distribution and Redistribution 283
8.26.2 Liquid Distribution Quality 284
8.26.3 Types of Liquid Distributors 287
8.26.3.1 Liquid Distributor Selection 290
8.26.3.2 Tower Arrangement for Liquid Distribution Devices 299
8.26.3.3 Liquid Distributor Models from Major Vendors 301
8.26.3.4 Liquid Distributor Assessment 302
8.26.3.5 Distributors for Structured and Grid Packings 304
8.26.3.6 Testing of Liquid Distributors 304
8.26.3.7 Feed Devices 307
8.26.3.7 Intermediate Liquid Draw-Off 309
8.26.4 Draw Nozzle Sizing 313
8.26.5 Support Plates 317
8.27 Datasheet Preparation 320
8.27.1 Column Datasheets 320
8.28 Specialized Services 323
8.29 Distillation Examples 324
8.30 Go-By Column Data Sheets and Tray Data Sheets 388
8.31 References 396
Chapter 9 Table of Contents Page No.
9.1 Introduction 3
9.1.1 Related important references 3
9.2 Design Codes 3
9.3 Design Practices 3
9.3.1 Vessel Sizing Criteria 3
9.3.2 Maximum Allowable Vapour Velocity for Vapour-Liquid Separation 6
9.3.3 Mist Eliminators 10
9.3.3.1 Vane-Type Mist Extractors 20
9.3.3.2 Cyclones 23
9.3.3.3 Coalescers and Fiber Beds 26
9.3.3.4 Mesh Blanket locations 29
9.3.4 Liquid Holdup and Surge Times in Separators 29
9.3.4.1 Surge Drums 30
9.3.5 Comparison between Vertical and Horizontal Vapor-Liquid Separators 32
9.3.6 Liquid-Liquid Separation 33
9.3.7 Vessel Configurations and Sizing Methodology 34
9.3.7.1 Vertical Separator Vessels 34
9.3.7.2 Horizontal Separators 41
9.3.7.3 Water – Hydrocarbon Emulsions 47
9.4 Process Datasheet Preparation 48
9.4.1 Choosing Vessel Orientation 48
9.4.2 Optimizing Vessel Size 48
9.4.3 Nozzle Location and Sizing 49
9.4.4 Design Pressure, Temperature and Minimum Design Temperature (MDT) 50
9.4.5 Vessel Support 51
9.4.6 Additional Clarifying Information 51
9.5 Process Calculations 52
9.6 Functions of Circular Segments 85
9.7 References 91
Chapter 10 Table of Contents Page No.
10.1 Introduction 3
10.1.1 Fired Heaters related important references 3
10.2 Codes and Related Practices 3
10.3 Applications of Fired Heaters 3
10.4 Heater Selection and Types of Fired Heaters 4
10.4.1 Direct Fired Heaters 5
10.4.2 Indirect Fired Heaters 10
10.4.3 Heaters classification defined based on draft 10
10.4.4 Comparison between API and DIN standards 13
10.5 Design Practices 13
10.5.1 Heater Components 17
10.6 Heat Transfer Design Guidelines 22
10.6.1 Process Design of Heaters 22
10.6.2 Combustion Basics 23
10.7 Combustion Side Design Considerations 61
10.7.1 Fuel 61
10.7.1.1 Gaseous fuels 61
10.7.1.2 Liquid Fuels 66
10.7.2 Combustion Air 70
10.7.3 Fuel Emmisivity 75
10.8 Guidelines on Recommended Firebox Geometry 76
10.9 Burner System Design 78
10.9.1 Burners 79
10.10 Air Preheat benefits 86
10.11 Atomisation 86
10.11.1 Mechanisms of Liqiuds Atomization 86
10.12 Importance of Proper Ducting To Multiple Burners in Fired Heater 90
10.13 Refractory and Heater Tube Materials 91
10.13.1 Details on Types of Refractory Materials 93
10.14 Materials of Construction 97
10.14.1 Mettalurgy of Various Components Of Heaters 97
10.15 Acid Dewpoint 100
10.16 Soot Blowers 104
10.17 Air Preheaters 105
10.18 Stacks and Ducts 106
10.19 Dampers 106
10.20 Heater Instrumentation 107
10.21 Overall control schemes 107
10.22 Burner Management System 119
10.23 Environmetal Aspects Concerning Fired Heaters 127
10.24 Performance Monitoring of Fired Heaters 132
10.25 Layout Considerations for Fired Heaters 133
10.26 Design Parameters of a Large API 560 Heater 134
10.27 Process Datasheet (PDS) Preparation 137
10.28 References 142
Chapter 11 Table of Contents Page No.
11.1 Introduction 3
11.1.1 Incinerators related important references 3
11.2 Waste Gas Stream Treatment Technologies 3
11.2.1 Thermal Oxidizers 5
11.2.2 Other Gas Waste stream VOC reduction Technology Types 9
11.3 Solid, Liquid and Gaseous Waste Incinerators 14
11.3.1 Waste Characterization 15
11.3.2 Characterization Factors affecting Waste Profile 17
11.3.3 Optimum Waste Profile for Design 18
11.4 Types of solid, liquid and gaseous waste incinerators 19
11.4.1 Rotary Kiln Incinerator 19
11.4.2 Liquid Injection Incinerator 24
11.4.3 Fluidised Bed Incinerator 27
11.4.4 Multiple Hearth Incinerator 28
11.4.5 Plasma Incinerator 31
11.5 The additional support infrastructure in a central HWI facility 33
11.6 Air Pollution Control Equipment 38
11.7 Depending on the type of waste, the various different configuration 56
11.7.1 Incineration process configurations for disposal of gaseous or liquid waste with no appreciable SOx or NOx production. 57
11.7.2 Incineration of Gaseous or Liquid waste to control SOx or Cl2 / HCl 59
11.7.3 Incineration of Gaseous or Liquid to control NOx 60
11.7.4 Incineration of Gaseous or Liquid Waste to Control NOx and Cl2 / HCl 61
11.7.5 Incineration of Liquid waste to control particulars 62
11.7.6 Incineration of solid waste with no appreciable SOx or NOx production 64
11.7.7 Incineration of fine solids in gaseous waste to control particulates 65
11.7.8 Incineration of fine solid waste to control NOx 66
11.7.9 Incineration of Solid Waste to control particulates 66
11.7.10 Incineration of High Nitrogen Crude to control NOx 67
11.8 References 68
Chapter 12 Table of Contents Page No.
12.1 Introduction to Agitated Jacketed Vessels 3
12.1.1 Agitated vessel related important references 3
12.1.2 Purpose of agitated vessels 3
12.2 Process Design 4
12.3 Types of Vessels 4
12.3.1 Designs 5
12.4 Mixing types and purposes 9
12.4.1 Homogenizing 9
12.4.2 Solid / Liquid Mixing 10
12.4.3 Liquid-Liquid dispersion 10
12.4.4 Gas-liquid Dispersion 10
12.4.5 Heat Transfer 11
12.5 Vortex Formation and Baffles 11
12.5.1 Vortex 11
12.5.2 Preventing vortex 11
12.6 Types of Agitators 12
12.7 Types of jackets, Coils 24
12.7.1 Matching Jacket Types to the Heat Transfer Media 25
12.7.2 Conventional Jackets 25
12.7.3 Half-Pipe Coil Jackets 27
12.7.4 Dimple Jackets (also known as plate coils) 27
12.7.5 Draft Tubes 28
12.8 Material of Constructions 29
12.9 Agitator Drive system 31
12.9.1 Shaft seals 33
12.10 Process Design of Agitated Vessels 35
12.10.1 Calculation Method for Agitated Reactor with Limpet Coil Jacket 36
12.10.2 Calculation for Jacketed Agitated Reactor 47
12.11 Power Requirement 55
12.11.1 Agitator Power Calculation 55
12.11.2 Power Number Curves for Various Type of Impeller 59
12.12 Calculated Example of Process Design of Agitated Vessel 64
12.13 Special Coverage on All Glass equipment 73
12.14 References 85
Chapter 13 Table of Contents Page Number
13.0 Introduction 8
13.1 Requirement of Pressure Relief Valves 8
13.1.1 Vessels 8
13.1.2 Heat Exchangers 9
13.1.3 Fired Heaters 9
13.1.4 Steam Boiler Systems 9
13.1.5 Piping 9
13.1.6 Rotating and Mechanical Equipment 9
13.1.7 Temperature Relief Valves 10
13.2 Requirement of Vacuum Relief Protection 10
13.2.1 Vacuum Relief Requirement 10
13.2.2 Vacuum Breaker/Preventer Systems 11
13.2.3 Vacuum Relief Valves 11
13.3 Technical Requirements of Pressure Relief Valves 11
13.3.1 Set Pressure 11
13.3.1.1 Margin above Maximum Operating Pressure 11
13.3.1.2 Pressure Relief Valve Set Pressure 12
13.3.1.3 Temperature Relief Valve Set Pressure 12
13.3.1.4 Vacuum Relief Valve Set Pressure 12
13.3.1.5 Spring Setting (Cold Differential Test Pressure) 12
13.3.2 Accumulation 12
13.3.3 Effect of Back Pressure 12
13.3.3.1 Effect on Opening Pressure 12
13.3.3.2 Effect on Relieving Capacity 15
13.4 PSV Types 17
13.4.1 Non-ASME Devices 18
13.4.2 Codes and Standards 18
13.4.3 Testing and Certification 19
13.4.4 Conventional Pressure Relief Valves 20
13.4.4.1 Operating Characteristics 22
13.4.4.2 Applications 26
13.4.4.3 Design Considerations 26
13.4.4.4 Operating Pressure 27
13.4.4.5 Superimposed Back Pressure 27
13.4.4.6 Inlet Loss 27
13.4.4.7 Back Pressure 28
13.4.5 Balanced Bellows Pressure Relief Valves 29
13.4.5.1 Operating Characteristics 29
13.4.5.2 Applications 30
13.4.5.3 Design Considerations 30
13.4.6 Pilot Operated Pressure Relief Valves 31
13.4.6.1 Pilot Operating Description 33
13.4.6.2 Pop and Modulating Action Pilots 33
13.4.6.3 Flowing and Non-flowing Pilots 34
13.4.6.4 Restricted Lift 34
13.4.6.5 Applications 34
13.5 Rupture Disks 37
13.5.1 Operating Characteristics 37
13.5.1.1 Bursting Pressure 38
13.5.1.2 Operating ratio 39
13.5.2 Rupture Disc disadvantages 41
13.5.3 Applications 42
13.5.3.1 Rupture Disk on Inlet to Pressure Relief Valves 42
13.5.3.2 Rupture Disk on Discharge from Pressure Relief Valve 42
13.5.3.3 Rupture Disk in Parallel with Pressure Relief Valve 43
13.5.4 Types of Rupture Disks 43
13.5.4.1 Conventional Tension Loaded Disks 43
13.5.4.2 Prescored Tension Loaded Disks 44
13.5.4.3 Composite Rupture Disks 46
13.5.4.4 Reverse Buckling Disks with Knives 46
13.5.4.5 Prescored Reverse Buckling Disks 48
13.5.4.6 Reverse Buckling Disk for Liquid Service 50
13.5.4.7 Graphite Disks 51
13.5.5 Design Considerations 51
13.5.5.1 Rupture Disc Special Features 53
13.6 Other Types of Pressure Relief Devices 55
13.6.1 Surface Condenser Pressure Relief Valves 55
13.6.2 Sentinel Valves 56
13.7 Design Philosophy for Determining Relief Load 56
13.7.1 Process Evaluation Basis 56
13.7.1.1 Material Balance Rates and Duties 57
13.7.1.2 Material Balance Rates and Duties plus Specified Margin(s) 57
13.7.1.3 Loads Based on Equipment or Process Limitations 58
13.7.2 Double Jeopardy 58
13.7.3 Utility Losses 58
13.7.3.1 Loss of Cooling Water 59
13.7.3.2 Loss of Electric Power 59
13.7.3.3 Loss of Steam 61
13.7.3.4 Loss of Fuel 61
13.7.3.5 Loss of Instrument Air 61
13.7.3.6 Loss of Instrument Power 61
13.7.3.7 Loss of Refrigeration 62
13.7.3.8 Loss of Inert Gas 62
13.7.4 Blocked Exits 62
13.7.5 Fire 62
13.7.5.1 Vertical Height Limit for Fire Heat Input 63
13.7.5.2 Wetted Surface Area Exposed to Fire Heat Input 64
13.7.5.3 Fire Circle 64
13.7.5.4 Fire Heat Input Causing Vaporization of Liquid 64
13.7.5.5 Fire Relief Rate from Vessels Containing Liquid 65
13.7.5.6 Fire Relief Rate from Vessels Containing Only Gas 65
13.7.5.7 Additional Fire Protection Considerations 65
13.7.5.8 Basic Assumptions for Fire Case Relief Analysis 66
13.7.5.9 Heat Flux Equations 66
13.7.5.10 Determination of Wetted Area 67
13.7.5.11 Insulation credit 69
13.7.5.12 Liquid Filled Systems 70
13.7.5.13 Protection of System with Individual Relief Valve 70
13.7.5.14 Maintenance Isolation 71
13.7.5.15 Determination of Latent Heat for Boiling Applications 71
13.7.5.16 High Boiling Point Fluids 72
13.7.5.17 Latent Heat of Hydrocarbon/Water Mixtures 72
13.7.5.18 Critical or Super-Critical Fluids 72
13.7.5.19 Relief Loads for Vessels Containing Vapor 73
13.7.5.20 Depressurizing 74
13.7.5.21 Sizing of Depressurizing system lines 76
13.7.6 Aerial Cooler Failure 78
13.7.7 Condensing Duty Failure 78
13.7.8 Reflux Failure 78
13.7.9 Accumulation of Non-Condensables 78
13.7.10 Abnormal Heat Input 78
13.7.11 Abnormal Vapour Input 78
13.7.12 Abnormal Chemical Reaction 79
13.7.12.1 Process Flow 79
13.7.12.2 Start-of-Run and End-of-Run Conditions 79
13.7.12.3 Reaction Process Characteristics 79
13.7.12.4 Alternate Operation Modes 79
13.7.12.5 Causes of Overpressure 80
13.7.12.6 Heat and Material Balance Considerations 80
13.7.12.7 Reactor Yields 80
13.7.12.8 Condensation Curves 80
13.7.12.9 Pressure Profiles 81
13.7.12.10 Pressure Relief and Depressurizing Facilities 82
13.7.12.11 Location of Pressure Relief Valves 82
13.7.12.12 Presence of Block Valves in the Loop 83
13.7.12.13 Equipment Shutdown 83
13.7.12.14 Hydraulic Expansion 83
13.7.12.15 Entrance of Volatile Liquid 83
13.7.12.16 Combination of Causes 83
13.7.12.17 Thermal Relief 84
13.7.12 Mechanical Equipment 84
13.7.13.1 Pumps 84
13.7.13.2 Compressors 85
13.7.13.3 Mechanical Driver Considerations 85
13.7.14 Unsteady state Conditions 86
13.7.14.1 Heat Exchange Tube Rupture 87
13.7.14.2 Double Pipe Exchangers 90
13.7.14.3 Fractionation/Distillation Tower Upsets 90
13.7.14.4 Depressurizing Impact 90
13.7.14.5 Block Valves, Check Valves and Control Valves 90
13.7.14.6 Heat Transfer Equipment Performance 93
13.7.15 HIPPS System 94
13.7.16 Effect of Instrumentation 95
13.8 Relief Load Calculation for Fractionating Tower PSV Sizing 96
13.8.1 System Description 96
13.8.2 Causes of Overpressure 96
13.8.3 H&MB Considerations for Upset Conditions 97
13.8.3.1 Basic Assumptions for Relief Case H&MB 97
13.8.3.2 Heat Balance for Upset Conditions 97
13.8.4 Maximum Capacity 100
13.8.5 Example of Relief load calculation for Fractionation column 101
13.9 Safety Relief Valve Sizing 107
13.9.1 Sizing for Gas or Vapour Relief- Critical Flow Pressure Ratio 108
13.9.2 PSV sizing for Gas or Vapor – Critical Flow 109
13.9.3 PSV sizing for Subcritical Gas or Vapor Flow 112
13.9.4 PSV sizing for Steam Flow 114
13.9.5 PSV sizing for Liquid Flow – Liquid Trim Relief Valves requiring capacity certification 115
13.9.6 PSV sizing for Liquid Flow – Conventional Pressure Relief Valves (Capacity certification not required) 118
13.9.7 PSV sizing as per Manufacturer’s Equations 119
13.9.7.1 Pilot Operated Pressure Relief Valves 120
13.9.8 PSV sizing for Two Phase Flow 120
13.9.9 Rupture Disc Sizing 121
13.10 Special Engineering Tips for PSV sizing 121
13.11 Specification of Safety/Relief Valves and Rupture Devices 124
13.11.1 Documentation 124
13.11.2 Specification 124
13.11.3 Depressurizing or Blowdown Valve Sizing 125
13.11.4 Specification of Depressurizing or Blowdown Valves 125
13.11.5 Dynamic Simulation 126
13.12 FLARE SYSTEM SIZING 127
13.12.1 OVERALL FLARE SYSTEM LOAD EVALUATION 127
13.12.2 Flare Load Determination for Each Significant Case 128
13.12.3 Effect of Instrumentation on Flare System Flare Loads 128
13.12.4 Effect of Auto-lockouts on Heat Input Duties 130
13.12.5 Fire Circle Flare Loads 130
13.12.6 Instrument Air Failure Flare Loads 130
13.12.7 Instrument Power Failure Flare Loads 131
13.12.8 Electric Power Failure Flare Loads 131
13.12.9 Steam Failure Flare Loads 131
13.12.10 Cooling Water Failure Flare Loads 132
13.12.11 Combination Cause Flare Loads 132
13.12.12 Flare Header Sizing and Design 132
13.12.13 Loads from Depressurizing Systems 133
13.12.13.1 Documentation of Flare Load Cases 133
13.12.14 Flare Load Minimization 136
13.12.14.1 System Design and Modifications 137
13.12.14.2 Percentage Reduction 137
13.12.14.3 Time Frame Analysis 138
13.12.14.4 Response of Control Instruments 138
13.12.14.5 Pump Driver Selection Philosophy 139
13.12.14.6 Auto Start Spares 139
13.12.14.7 Instrumentated Shutdown System 140
13.12.14.8

High Integrity Pressure Protective Instrumentation
(HIPPS) Systems
140
13.13 Relief Material Recovery and Disposal 141
13.13.1 Disposal Options 141
13.13.2 Hazard and Risk Assessment 142
13.13.3 Environmental Factors 142
13.13.4 Vapor Release Criteria 142
13.13.4.1 Atmospheric Release Criteria 143
13.13.5 Liquid Release Criteria 144
13.13.5.1 Non-Hazardous Streams 144
13.13.5.2 Non-Hazardous Hydrocarbons 144
13.13.5.3 Hazardous Streams 144
13.13.5.4 Two Phase Releases 144
13.13.6 Prevention of Liquid Releases 144
13.13.6.1 Disposal into a Process 145
13.13.6.2 Closed Disposal Systems 146
13.13.6.2.1 Intermediate Collection Systems 146
13.13.6.2.2 Flare Systems 146
13.13.6.2.3 Vapor Recovery 147
13.13.6.2.4 Incinerators and Burn Pits 147
13.13.6.2.5 Liquid Handling Systems 147
13.13.6.2.6 Treating Systems 148
13.13.7 Design Considerations 148
13.13.7.1 Atmospheric Releases 148
13.13.7.2 Intermediate Collection Systems 149
13.13.7.3 Flare Systems 149
13.13.7.4 Vapor Recovery- Flare Gas Recovery Systems 150
13.13.7.5 Incinerators 153
13.13.7.6 Liquid Handling Systems 153
13.13.7.7 Treating Systems 153
13.14 Relief System Piping 158
13.14.1 Pressure Relief Valve Installation 158
13.14.2 Spare Pressure Relief Valves 158
13.14.3 Location 158
13.14.4 PSV Installation Position 159
13.14.5 Block Valves 161
13.14.6 Inlet Piping 162
13.14.7 Discharge Piping 164
13.14.8 Pressure Relief Valve Bonnet Vents 164
13.14.9 Pilot Operated Pressure Relief Valve Installation 164
13.14.10 Temperature Relief Valve Installation 165
13.14.11 Rupture Disk Installation 165
13.15 Relief Discharge System 166
13.15.1 Discharge to Atmosphere 166
13.15.2 Discharge to Closed System 166
13.15.3 Permissible Back Pressure on Pressure Relief Valves 167
13.15.4 Relief System Piping Design Considerations 168
13.15.4.1 Piping Layout Guidelines 168
13.15.4.2 Design Temperature 168
13.15.4.3 Design Pressure 169
13.15.4.4 Stress 169
13.15.4.5 Isolation Valves 169
13.15.4.6 Design Criteria for Relief Valve Inlet Piping 169
13.15.4.7 Design Criteria for Relief Headers 170
13.15.4.8 Piping Metallurgy 171
13.15.4.9 Winterization, Safety Insulation and Steam Tracing 171
13.15.5 Line Sizing 171
13.15.5.1 Relief Valve Inlet/Outlet Piping Sizing 171
13.15.5.2 Line Sizing of the Main Relief Header 175
13.15.6 Flow Metering 177
13.15.6.1 Design 177
13.15.6.2 Methods 177
13.15.7 Sealing and Purging 178
13.15.7.1 Sealing 178
13.15.7.2 Gas Seals 179
13.15.7.3 Water Seals 181
13.15.7.4 Purge Gas 183
13.16 Knockout, Blowdown, Seal, Quench Drums and Pumps 185
13.16.1 Knockout Drum 185
13.16.1.1 Inlets to Knock out drums 187
13.16.1.2 Flare Knock-Out Drum Elevation 188
13.16.2 Blowdown Drum 190
13.16.3 Seal Drum 191
13.16.3.1 Vertical Water Seal Drum 194
13.16.3.2 Horizontal Water Seal Drum 194
13.16.4 Quench Drums 194
13.16.5 Pumps 196
13.17 Flare System 198
13.17.1 Flare Location 198
13.17.1.1 Radiation 198
13.17.1.2 Liquid Carryover 199
13.17.1.3 Ground Level Concentrations of Toxic Compounds (GLC’s) 199
13.7.1.4 Selection of Flare Stack Location 199
13.17.2 Types of Flares 201
13.17.2.1 Elevated Flares 202
13.17.2.2 Ground Flares 206
13.17.2.3 Offshore Platform Flares 212
13.17.3 Flare System Metallurgy 213
13.17.3.1 Hydrocarbon Flaring 213
13.17.3.2 H2S Flaring 214
13.17.4 Elevated Flare Sizing 214
13.17.4.1 Stack Diameter 215
13.17.4.2 Stack Height 215
13.17.4.3 Radiation Considerations 222
13.17.5 Ground Flare Sizing 224
13.17.5.1 Enclosed Ground Flares 224
13.17.5.2 Open Pit Ground Flares 226
13.17.5.3 Burn Pit 226
13.17.6 Smokeless Flaring 227
13.17.6.1 Smokeless Flaring Requirements 228
13.17.6.2 Steam Injection 228
13.17.6.3 Air Assisted Flaring 228
13.17.6.4 Miscellaneous methods for smokeless flaring 233
13.17.6.5 Smokeless Flaring Control 234
13.17.6.6 Flare Tip Design Options 234
13.17.7 Noise and Environmental 242
13.17.7.1 Environmental 242
13.17.8 Flare Ignition 243
13.17.8.1 Pilot Ignition 243
13.17.8.2 Flame Front Generator (FFG) 245
13.17.8.3 Other Accessories 246
13.17.8.4 Pilot Monitoring 247
13.17.9 Flare Header Sizing Methodology 247
13.17.10 Flare System Data Sheet 252
13.18 Glossary 253
13.19 References 255
Chapter 14 Table of Contents Page No.
14.1 Introduction 4
14.1.1 Hydraulics related important references 4
14.2 Design Practices 4
14.2.1 Piping Sizes and Schedule 4
14.2.2 Hydraulic Design Consideration 5
14.2.3 Design Margins for Line Sizing 6
14.2.4 Line Sizing Criteria 6
14.2.4.1 Hydrocarbon Liquid Line Sizing 6
14.2.4.2 Battery Limit Requirements 8
14.3 Calculations 11
14.3.1 Discussion Guidelines 11
14.3.2 Hydraulic Hammer 15
14.3.3 Vapour Line Sizing 18
14.3.3.1 Noise Considerations 19
14.3.3.2 Sonic Velocity, Vapor 19
14.3.3.3 Two phase flow – Maximum Velocity 20
14.3.3.4 Reboiler Return Line to Column 20
14.3.3.5 Compressor Suction and Discharge Lines 21
14.3.3.6 Crude Oil Vacuum Unit Furnace Transfer Line 22
14.3.3.7 Feed to a Column 22
14.3.3.8 Column Overhead Vapor Lines 23
14.3.3.9 Column Overhead Condenser Rundown Lines 23
14.3.3.10 Relief Valve Discharge Line to Atmosphere 24
14.3.3.11 Amine, Carbonate, and Sour Water 24
14.3.3.12 Sulfur 24
14.3.3.13 Sulfuric Acid 25
14.3.3.14 Sodium Hydroxide 25
14.3.3.15 Flare Lines 25
14.3.3.16 Vapour – Liquid Mixtures (Two Phase Flow) 26
14.4 Specialized Services 29
14.5 Utilities Line Sizing Guidelines 30
14.5.1 Water Systems 30
14.5.2 Boiling Water Lines 30
14.5.3 Cold Water Lines 31
14.5.4 Cooling Water 31
14.5.5 Fuel Oil to Heaters 31
14.5.6 Fuel Gas to Heaters 32
14.5.7 Steam Systems 35
14.5.8 Vacuum Piping 41
14.5.9 Utility Gas and Air Systems 41
14.5.10 Tank Overflows 44
14.5.11 Special Commodities 44
14.5.12 Slurry Line Sizing 45
14.5.12.1 Types of Flow Regimes 46
14.5.12.2 Limiting Settling Velocity 46
14.5.12.3 Slurry Velocity Selection Criteria 47
14.5.13 Bitumen and Hydrocarbon Slurry Piping 48
14.5.14 Relief and Vapour Depressurizing Lines 48
14.6 Hydraulic Circuits 48
14.6.1 Documentation Requirements 48
14.6.2 System Sketch 48
14.6.3 Operating Cases 49
14.6.4 Piping Segments 49
14.6.5 Piping Lengths & Fittings 50
14.6.6 Equipment Allowances 51
14.6.7 Regulating Control Valve Allowances 51
14.7 Non-Pumped Hydraulic Circuits 53
14.8 Two Phase Equations 54
14.9 Examples of Hydraulic calculations 54
14.10 Special Tip 65
14.11 Cooling Tower System 66
14.12 Abbreviations 74
14.13 Glossary of terms 75
14.14 References 76
Chapter 15 Table of Contents Page No.
15.1 Introduction 3
15.1.1 Vacuum equipment related important references 3
15.1.2 Vacuum Definition 3
15.1.2.1 Vacuum measurement 4
15.1.2.2 Industrial vacuum systems 5
15.2 Vacuum equipment terminology 7
15.2.1 Suction pressure 7
15.2.2 Discharge pressure 8
15.2.3 Capacity of the unit 8
15.2.4 Air leakage 8
15.3 Types of Vacuum producing equipment 8
15.4 Vacuum pump selection 10
15.4.1 Time required to reach maximum vacuum 11
15.4.2 Vacuum at high altitudes 12
15.4.3 Mechanical Vacuum Pumps 12
15.4.3.1 Gas Transfer Pumps 14
15.4.3.2 Entrapment (Capture) Vacuum Pump 35
14.4.4 Jet Pumps and Ejectors 39
14.4.4.2 Gas-Gas Ejectors 42
14.4.4.3 Liquid-Gas Ejectors 42
14.4.4.4 Ejectors for Mass Transfer 43
14.4.4.5 Steam Ejectors 43
15.4.4.6 Estimating the Number of Stages 54
15.4.4.7 Water Vapour Associated with NC Gases 54
15.4.4.8 Estimation of Steam Consumption of Jets 55
15.4.4.9 Estimation of Water Consumption of Jets 55
15.4.4.10 Capacity of Steam Jets for Evacuation 57
14.5 Air leakage in vacuum vessels 60
14.5.1 Estimation of air leakage during design stage 61
15.6 Ejector Efficiency 70
15.6.1 Staging Ejectors 71
15.7.2 Ejector Ratings 72
15.7.3 Effect of MW and Temperature 75
15.7.4 Discharge Pressure 76
15.7.5 Changes in Steam Flow 76
15.7.6 Multi-stage Ejector Design 77
15.8 Control 77
15.9 Writing the Specifications 80
15.10 Process specification sheet 85
15.11 Go-by P&ID and layout 86
15.12 Glossary 88
15.13 References 90
Chapter 16 Table of Contents Page No.
16.1 Introduction 5
16.1.1 Related important references 5
16.2 Fuels system 6
16.2.1 Gaseous Fuels 6
16.2.1.1 Introduction 6
16.2.1.2 Fluid Conditioning and Delivery Basis 6
16.2.2 Liquid Fuel 9
16.2.2.1 Introduction 9
16.2.2.2 Fluid Conditioning and Delivery Basis 12
16.2.2.3 Storage and Pumping Temperature 14
16.2.2.4 Utility Flow Diagram 14
16.2.2.5 Equipment Sizing Criteria 14
16.2.3 Solid Fuel 20
16.2.3.1 Introduction 20
16.2.3.2 Equipment Sizing Criteria 20
16.3 Compressed air system 24
16.3.1 Introduction 24
16.3.1.1 Determination of System Capacity 24
16.4 Nitrogen system 41
16.4.1 Introduction 41
16.4.2 Determination of System Capacity 41
16.4.3 Peak Demand of Nitrogen 41
16.4.4 Fluid Data 42
16.4.5 Operational Requirements 42
16.4.6 Safety 42
16.4.7 Fluid Conditioning and Delivery Basis 42
16.4.8 Sources 43
16.4.9 Cost comparison 48
16.4.10 Control and Instrumentation 49
16.4.11 Equipment Sizing Criteria 49
16.5 Thermal fluid systems 53
16.5.1 Steam 53
16.5.1.1 Introduction 53
16.5.1.2 Operational Requirements 56
16.5.1.3 Fluid Conditioning and Delivery Basis 57
16.5.2 Steam System 57
16.5.2.1 Steam System Design Overview 57
16.5.2.2 Steam Distribution 57
16.5.3 The Boiler House 61
16.5.3.1 Equipment Sizing Criteria 61
16.5.4 Components of Boiler 91
16.5.4.1 Deaerator 91
16.5.4.2 Mechanical Deaeration 102
16.5.4.3 Control systems 103
16.5.4.4 Superheaters 109
16.5.4.5 Desuperheater 110
16.5.4.6 Feed Water tank 115
16.5.4.8 Economisers, Fans and Stack 123
16.5.4.9 Boiler Fuel System 125
16.5.4.10 Blow Down and Blow down Flash Drums 130
16.5.4.11 Multi-Boiler Installations 143
16.5.4.12 Condensate Flash Drums 144
16.5.4.13 Soot blowers 150
16.5.4.14 Piping and valves 152
16.5.4.15 Control and Instrumentation 153
16.5.4.16 Steam Separators and Accumulators 161
16.5.4.17 Steam Tracing 162
16.5.4.18 Letdown Stations 165
16.5.4.19 Turbo-Generators and Surface Condensers 165
16.5.4.20 Auxiliary Equipment 167
16.5.5 Boiler water treatment 169
16.5.6 Steam Traps, applications and hook up details 173
16.5.6.1 Steam Traps 174
16.5.6.2 Selecting Steam Traps 194
16.5.6.3 Steam Trap Application Hook-Up Diagrams 197
16.5.7 Special Steam System Design Considerations 207
16.5.8 For Projects Handling Steam / Condensate inside India 212
16.5.9 Specification of Boilers 216
16.5.10 Preparation of Boiler Specifications, Evaluating Boiler Vendor Bids 221
16.5.11 Condensate Collection System Design Comments 225
16.6 Thermal Fluids and Thermic Fluid Systems 268
16.6.1 Introduction 268
16.6.2 Fluid Data 268
16.6.3 Control and Instrumentation 276
16.6.4 Equipment Sizing Criteria 276
16.7 Cooling and Refrigeration system 292
16.7.1 Air 292
16.7.2 Cooling Water 292
16.7.2.1 Cooling Towers 294
16.7.2.2 Classification of Cooling Towers 299
16.7.2.3 Components of Cooling Tower 314
16.7.2.4 Cooling Tower Controls 321
16.7.2.5 Cooling Tower Layout considerations 322
16.7.2.6 Cooling Tower Specification 322
16.8 Cooling Tower Side Stream Filter 323
16.9 Refrigerants 335
16.9.1 Introduction 335
16.9.2 Determination of System Capacity 337
16.9.3 Fluid Data 344
16.9.4 Operational Requirements 344
16.9.5 Absorption refrigeration 347
16.9.6 Aqueous Ammonia System 348
16.9.7 Utility Flow Diagram 350
16.9.8 Equipment Sizing Criteria 351
16.10 Chilled Water Systems & Applications 354
16.11 Water Treatment 367
16.11.1 Introduction 367
16.11.2 Water Sources 367
16.11.3 Impurities in Water 367
16.11.4 Chemical reactions involved in water treatment 376
16.11.5 Water Treatment Schemes 379
16.11.5.1 Surface and Ground Water Treatment 379
16.11.5.2 Sea Water Desalination/Reverse Osmosis Treatment 380
16.11.5.3 Desalination 381
16.11.5.4 Comparison of the three major desalination technologies 392
16.11.5.5 Other Processes for Desalination 395
16.12 Water Treatment Methods and Process Equipments 396
16.12.1 Pretreatment & Pretreatment Process Equipment Details 396
16.12.2 Membrane System 404
16.12.2.2 Membrane Separation & Ion Exchange 404
16.12.2.3 Ion Exchange/Demineralization 425
16.12.2.4 Co-Current and Counter-Current Regeneration 432
16.12.2.5 Neutralization of Regenerant Effluent 433
16.12.2.6 Polishing or Conditioning Treatment 439
16.12.2.7 Waste/Sludge Handling & Disposal 441
16.12.2.8 Condensate Treatment 442
16.13 Waste Water Treatment (Effluent Treatment) 446
16.13.1 Introduction 446
16.13.3 Water Treatment Schemes 450
16.13.4 Waste Water Treatment Methods and Process Equipments 453
16.13.5 Enquiry Specification of ETP 468
16.14 References 469
Chapter 17 Table of Contents Page No.
17.1 Introduction 3
17.1.1 Dryers related important references 3
17.2 Dryers 3
17.2.1 Dryer Terminology 4
17.2.2 Description of Various Dryer Types 5
17.2.2.1 Batch Dryers 5
17.2.2.2 Continuous Dryers 7
17.2.2.3 Types of dryers 7
17.2.2.4 Salient Features of Each type of Dryer 11
17.3 Selection from the various types of Dryers 41
17.4 References 48
Chapter 18 Table of Contents Page No.
18.1 Introduction 3
18.2 Motor Types and Applications 3
18.2.1 Electric Motors 3
18.2.2 Motor Types applied to plant services 4
18.2.3 Motor Classification 10
18.3 Motor Enclosures 11
18.4 Basic Design Considerations 11
18.4.1 Typical shaft speeds in rpm 11
18.4.2 Standard Motor HP Ratings 13
18.4.3 Typical voltage levels for motors 13
18.5 Variable Speed Motors 13
18.6 Glossary 15
Chapter 19 Table of Contents Page No.
19.1 Introduction 3
19.1.1 Evaporators related important references 3
19.2 Types of Evaporators 3
19.2.1 Natural circulation type 3
19.2.2 Forced-Circulation Evaporator 12
19.2.3 Agitated Thin Film Evaporators 18
19.2.4 Horizontal Tube Evaporators 19
19.2.5 Plate Heat Exchanger Evaporator 21
19.3 Special Evaporator Types 22
19.4 Evaporator Auxiliaries 25
19.5 Selection of Evaporators 26
19.6 Energy Efficiency of Evaporation Plants 26
19.6.1 Multiple-effect evaporation 27
19.6.2 Thermal vapour recompression 28
19.6.3 Mechanical vapour recompression 28
19.7

Mass/energy flow diagrams of an evaporator with
Different types of heating
29
19.8 Methods of Feeding of Evaporators 31
19.9 Performance of Evaporators (Capacity and Economy) 33
19.9.1 Thermal/ Process Design Considerations 34
19.9.2 Single-effect evaporation 36
19.9.3 Multiple-Effect Evaporator Systems 38
19.9.3.1 Capacity and Economy of Multiple-Effect Evaporators 38
19.9.3.2 Effect of boiling-point elevation on capacity of evaporators 38
19.9.3.3 Effect of liquid head and friction on temperature drop 41
19.10 Mechanical Design Considerations 41
19.11 Multiple effect calculations 42
19.12 Examples of Process Calculations for Evaporation 45
19.13 Process Data Sheet of Package Evaporation Plant 57
19.14 References 62
Chapter 20 Table of Contents Page No.
20.1 Introduction 3
20.1.1 Related important references 4
20.2 Codes and Standards 4
20.3 Equipment comparison 4
20.4 Product grouping 5
20.4.1 Group I 5
20.4.2 Group II 5
20.5 Fluidization Characteristics 7
20.5.1 Flow Function 7
20.5.2 Important Flow Features 7
20.5.2.1 Factors influencing flow 7
20.6 Conveyors 7
20.6.1 Selection of mechanical conveyors 8
20.6.1.1 Belt conveyors 8
20.6.1.2 Screw conveyors 9
20.6.1.3 Pneumatic conveyors 10
20.7 Factors for Design and Use 17
20.7.1 Other Parameters involved in selection 22
20.7.1.1 Duty Requirement 22
20.7.1.2 Material Container and Pickup Point 22
20.7.1.3 Process Equipment 22
20.7.1.4 Headroom 22
20.7.1.5 Plant Site and Industry Environment 23
20.8 Pneumatic Conveying systems 24
20.8.1 Vacuum system 24
20.8.2 Pressure Mode 29
20.8.3 High Pressure Mode 29
20.8.4 Pneumatic Conveying System – Dilute versus Dense Phase 32
20.8.4.1 Lean Phase or Dilute Phase Conveying 35
20.8.4.2 Dense Phase Conveying System 37
20.9 Few recommended pneumatic conveying system configurations 41
20.10 Pneumatic conveying system components 56
20.11 Typical Calculation for Pneumatic Conveying 68
20.11.1 Estimating Pressure Drop in Dilute Phase Conveying System 68
21.12 Steps in System Design 74
21.12.1 Example of dilute phase sizing 74
21.13 References 78
Chapter 21 Table of Contents Page No.
21.1 Introduction 3
21.1.1 Crystallizer related references within handbook 3
21.2 Crystallization 3
21.2.1 Crystal Growth 4
21.2.2 Methods to achieve super saturation 7
21.2.3 Solubility and Phase Diagrams 8
21.2.4 Crystal Yield 9
21.3 Equipment Used in Crystallization 10
21.3.1 Selection/Design of Crystallisers 11
21.3.2 Crystallizer selection 11
21.3.3 Crystallizer mode & types 14
21.4 Examples of Crystallization Calculations 23
21.5 Process Data-Sheet for Crystallizer 26
21.6 References 31
Chapter 22 Table of Contents Page No.
22.1 Introduction 4
22.1.1 Steam Turbines / Gas turbines related important references 4
22.2 Steam Turbines 4
22.2.1 Principle of Operation of Steam Turbine 4
22.2.1.1 Curtis Stage 5
22.2.1.2 Other Types of Stages 6
22.2.1.3 Compounding of Steam Turbines 7
22.2.2 Turbine Classification 10
22.2.2.1 Mechanical drive turbines 11
22.2.2.2 Classifications of Mechanical Drive Turbines 11
22.3 Turbine and Cycle Efficiency 12
22.4 Types of Steam Turbines 13
22.4.1 Backpressure or Noncondensing 13
22.4.2 Condensing Steam Turbines 14
22.4.3 Extraction Turbines 16
22.4.4 Induction Turbine 17
22.5 Types of Applications 18
22.6 Mechanical Components 18
22.6.1 Trip and Throttle Valve 20
22.6.2 Governor Valve 20
22.6.3 Inlet Control Valves 20
22.6.4 Steam Chest 21
22.6.5 Hand Valve 22
22.6.6 Nozzles 22
22.6.7 Blades 22
22.6.8 Bearings and Lubrication Systems 22
22.6.9 Steam and Oil Seals 23
22.7 Steam Turbine Process Calculations 23
22.7.1 Example Calculation 23
22.7.2 Turbines with Saturated Exhaust Steam 36
22.7.3 Efficiencies of Steam Turbines for Use in Calculations 37
22.8 Use of Hand Valves to Maximize Efficiency 39
22.9 Theoretical Steam Rate Tables 40
22.10 Performance Curves 41
22.11 Losses in Steam Turbines 42
22.12 Control of Steam Turbines 43
22.13 Glossary of Steam Turbines 53
22.14 Introduction to Gas Turbines 54
22.15 How a Gas Turbine Works 54
22.16 Major Components 55
22.17 Gas Turbine Types 57
22.17.1 Heavy Duty 57
22.17.2 Aircraft Derivative 57
22.18 Gas Turbine Configurations 59
22.18.1 Single-Shaft 59
22.18.2 Dual Shaft Gas Turbine 59
22.18.3 Three-Shaft Gas Turbine 61
22.19 Available Models of Gas Turbines 63
22.20 Fuels for Gas Turbines 63
22.21 Gas Turbine Cycles 63
22.21.1 Efficiency Definitions 64
22.21.1.1 Simple Cycle 64
22.21.1.2 Other Cycles 64
22.22 Gas Turbine Performance Calculations 67
22.23 Gas Turbine Performance Curves 68
22.24 Auxiliary Equipment 74
22.25 Control Systems 74
22.26 Optimum overrating 78
22.27 Gas Turbine Inlet & Outlet Treatment 78
22.28 Specification of Gas Turbines 80
22.29 Glossary for Gas Turbines 82
22.30 References 84
Chapter 23 Table of Contents Page No.
23.1 Introduction 3
23.1.1 Related important references 3
23.1.2 Leaching and Extraction 3
23.2 Leaching 3
23.2.1 Preparation of Solid Leaching 4
23.3 Equipment used in Leaching Operations 5
23.3.1 Discontinuous extraction 5
23.3.1.1 Discontinuous Apparatus 6
23.3.2 Continuous extraction 7
23.3.2.1 Continuous extraction apparatus 8
23.4 Process Calculation Methods for Leaching 14
23.4.1 Equilibrium Relations and Single-Stage Leaching 14
23.4.2 Few terminology definitions 14
23.4.3 Calculation of the Number of Stages 15
23.4.4 Leaching Calculation Examples 18
23.5 Liquid-Liquid Extraction 25
23.5.1 Typical examples in CPI 25
23.5.2 Comparison between Liquid-liquid extraction and Distillation 25
23.5.3 Solvent Selection Criteria 26
23.6 Equipment Involved in Liquid-Liquid Extraction 27
23.6.1 Single step mixer-settler 27
23.6.2 Continuous 28
23.7 Process Calculation Methods 38
23.7.1 Conjugate line 42
23.7.2 Separation factor 43
23.7.3.1 Effect of Temperature on Solubility Diagram 45
23.7.4 Equilibrium data on Rectangular Diagram 46
23.7.4.1 Addition of two streams 47
23.7.4.2 Subtraction of two streams 48
23.7.5 Methods of Operation (Types of contact) 48
23.8 Continuous contact (packed or spray columns) 54
23.9 Examples of Liquid-Liquid Extraction Calculations 56
23.10 References 77
Chapter 24 Table of Contents Page No.
24.0 Introduction 5
24.1 Flame arresters 5
24.1.1 Master types 8
24.1.2 Flash back and flame arresters 11
24.1.2.1 Classification of flash back arresters 11
24.1.2.2 Causes of flash back 11
24.1.2.3 Reasons for using flame arresters 12
24.1.2.4 Flash back arrester placement 12
24.1.2.5 Working of a flash back arrester 12
24.1.3 Flammability 13
24.1.4 Flashback prevention methods 16
24.1.5 Locations of installations of flame arresters 17
24.1.6 Flashback interruption methods 21
24.1.6.1 Detonation arrester certification classes 22
24.2 Spray nozzles 26
24.2.1 Single fluid nozzle 26
24.2.2 Two Fluid nozzles 29
24.2.3 Rotary atomizers 30
24.2.4 Ultrasonic atomizer 30
24.2.5 Spray nozzles for pipeline applications 31
24.2.6 Spray nozzle performance factors 32
24.2.6.1 Nozzle wear 33
24.2.7 Material of construction 33
24.3 Insulation 34
24.3.1 Insulation selection 34
24.3.2 Insulation types 34
24.3.3 Common insulation types 38
24.3.4 Protective coatings and finishes 42
24.3.5 Heat loss calculation 42
24.4 Vortex breakers 49
24.5 Static mixers 53
24.5.1 Coefficient of variation 54
24.5.2 Benefits of static mixers 55
24.5.3 Principles of operation 56
24.5.4 Types and applications 56
24.5.5 Process data to be provided 60
24.6 Manual Valves 62
24.6.1 Types of valves 63
24.6.1.1 Gate valves 66
24.6.1.2 Globe valve 71
24.6.1.2.1 Globe valve body designs 72
24.6.1.2.2 Globe valve disks 73
24.6.1.2.3 Globe valve seats 74
24.6.1.2.4 Globe valve direction of flow 74
24.6.1.3 Ball valves 74
24.6.1.3.1 Ball valve stem design 76
24.6.1.3.2 Ball valve bonnet 76
24.6.1.3.3 Ball valve position 76
24.6.1.4 Plug valves 76
24.6.1.4.1 Plug port 77
24.6.1.4.2 Multiport plug valves 77
24.6.1.4.3 Plug valve disk 78
24.6.1.4.4 Manually operated valve location 79
24.6.1.5 Diaphragm valves 79
24.6.1.5.1 Diaphragm construction 80
24.6.1.6 Pinch valves 81
24.6.1.6.1 Pinch valve bodies 81
24.6.1.7 Butterfly valves 82
24.6.1.7.1 Butterfly valve seat construction 82
24.6.1.7.2 Butterfly valve body construction 83
24.6.1.8 Needle valve 83
24.6.1.8.1 Needle valve applications 84
24.6.1.9 Check valves 84
24.6.1.9.1 Special check valves 89
24.6.2 Materials of construction 91
24.6.3 Automatic Recycle valve 93
24.6.4 Air Release valves / combination valves 96
24.6.4.1 Air valves 97
24.6.4.1.1 Types of air valves 98
24.6.4.2 Special types of valves 104
24.6.4.3 Locations of air valves 104
24.6.4.4 Air valve sizing 106
24.6.4.5 Sizing of air /vacuum release valves 106
24.6.4.6 Process specification for ARVs 111
24.7 Liquid filtration 117
24.7.1 Types of filtration 117
24.7.2 Filter selection 118
24.8 Cartridge filters 128
24.9 Strainers 135
24.9.1 Strainers in pump suction 135
24.9.2 Basket type strainers 136
24.9.3 Strainer specification 136
24.9.4 Pressure drop calculation 137
24.9.5 Strainers in other service 138
24.9.6 Miscellaneous 138
24.9.7 Mesh size for basket type strainers 138
24.9.8 Pressure drop for basket strainers 139
24.9.9 Temporary strainers 146
24.10 Immersion heaters 148
24.10.1 Heater types 149
24.10.2 Selecting a heater 151
24.11 Separators inlet devices 152
24.11.1 Types 152
24.11.2 Selection of inlet cyclonic type device 158
24.12 API Separators 161
24.12.1 Stoke’s law 163
24.12.2 Rate of rise theory 164
24.12.3 API performance factors 165
24.12.4 API Separator design criteria 165
24.13 Tilted plate separators / Corrugated plate separators 171
24.13.1 Process description TPI system 172
24.13.2 Typical Removal rates 173
24.14 Hoses & Hose couplings 175
24.14.1 Definitions 175
24.14.2 Selection of type 1 hose 175
24.14.3 Selection of type 2 hose 176
24.15 Pressure Reduction and Desuperheating station (PRDS) 177
24.15.1 Sample calculation 178
24.15.2 Types 179
24.15.3 PRDS 183
24.15.4 Engineering Guidelines for PRDS 184
24.16 Restriction Orifices 185
24.16.1 Design procedure 185
24.17 Silencers (Noise Attenuation) 188
24.17.1 Definitions 188
24.17.2 Noise level requirements 188
24.17.3 Silencers for atmospheric vents 189
24.17.4 Silencer selection factors 190
24.18 Exhaust Heads 191
Chapter 25 Table of Contents Page No.
1 Blow down Orifice Sizing calculation 3
2 Control Valve CV calculation Examples 6
3 Safety Valve Sizing examples 14
4 Flare purge gas rate 18
5 Two Phase Pressure Drop and erosional Velocity as per API 14 E 20
6 Compressor settle out pressure 23
7 Hot Oil Expansion Vessel sizing 26
8 Stoichiometry 34
9 Water Chemistry 37
10 Free Evaporation Pond Sizing 42
11 Forced Evaporation Pond Calculation 47
Chapter 26 Table of Contents Page No.
26.1 Project Stages 3
26.2 Project Contract Types 7
26.2.1 Fixed Price (FP) Contract 7
26.2.1.1 Fixed Price Contract (FP, or Lump Sum, Firm Fixed Price) 7
26.2.1.2 Fixed Price Incentive Fee (FPIF) 10
26.2.1.4 Fixed Price Economic Price Adjustment Contract 11
26.2.2 Time & Material (T & M) Type Contract 11
26.2.3 Cost-Reimbursable (CR) Contract 11
26.2.3.1 Cost Contract 11
26.2.3.2 Cost Plus Fee (CPF) or Cost Plus Percentage of Costs (CPPC) 11
26.2.3.3 Cost Plus Fixed Fee (CPFF) 12
26.2.3.4 Cost Plus Incentive Fee 12
26.2.3.5 Cost Plus Award Fee (CPAF) 12
Chapter 27 Table of Contents Page No.
27.1 Engineering Disciplines 3
27.2 Interaction of Engineering Disciplines with Process 3
27.2.1 Piping Discipline 3
27.2.1.1 Unit Plot Plans and Overall Plot plan 3
27.2.1.2 Isometrics Produced by Piping Discipline 6
27.2.2 Instrumentation Discipline 8
27.2.2.1 Alarm & Trip Set Points 8
27.2.2.2 Logic / Sequential Diagrams 8
27.2.2.3 DCS Graphics 9
27.2.3 Civil Discipline 14
27.2.4 Electrical Discipline 15
27.2.4.1 Finalisation of Motor List 17
27.2.5 Mechanical Discipline 18
27.2.5.1 Nozzle Orientation 18
27.2.5.2 Checking Of Column Internals / Other Internals 19
27.2.5.3 Agitator Mounted Equipment 19
27.2.5.4 Pumps 19
27.2.5.5 Compressors / Fans / Blowers 20
27.2.5.6 Agitators 21
27.3 Inter discipline Interactions explained in Diagrams 22
27.4 Proposals 25
27.4.1 Contents of Report 40
27.5 Cost Estimation 41
27.6 Financial Analysis 42
27.6.1 Investment Outlay 42
27.6.1.1 Tangible fixed investment 42
27.6.1.2 Intangible fixed investment 42
27.6.1.3 Preliminary expenses 42
27.6.1.4 Preoperative expenses 42
27.6.1.5 Working capital 42
27.6.2 Means of Financing 43
27.6.2.1 Share Capital, Equity, Preference 43
27.6.2.2 Central government subsidy 43
27.6.2.3. Long term debt 43
27.6.2.4 Current liabilities 43
27.7 Fundamentals of Financial analysis 43
27.7.1 Time line Concept 44
27.7.2 Cash Flow 44
27.7.3 Investment evaluation 45
27.8 Project Ranking 49
27.8.1 Simple Payout 50
27.8.2 Mutually Exclusive Projects 50
27.8.3 Sensitivity Analysis 53
27.8.4 Present value ratio 54
27.9 References 60
Chapter 28 Table of Contents Page No.
28.1 Introduction 3
28.2 The documents produced by each discipline 4
28.2.1 Select (Concept) Stage 4
28.2.2 FEED Stage 5
28.2.2.1 General Projects Documentation 5
28.2.2.2 Process Discipline 5
28.2.2.3 Piping Discipline 6
28.2.2.4 Mechanical Discipline 6
28.2.2.5 Instrumentation Discipline 7
28.2.2.6 Electrical Discipline 8
28.2.2.7 Civil & Structural and Architectural 9
28.2.2.8 Loss Prevention 10
28.3 Detail Engineering 11
28.4 FEED Versus Detail Engineering Deliverables 12
Chapter 29 Table of Contents Page No.
29.1 Introduction 4
29.1.1 Related References 4
29.2 Process Engineers Role 4
29.2.1 Process Engineering Activities 4
29.2.2 Overview of Key Process Engineering Documents 4
29.3 Process Basis Of Design (BOD) 7
29.4 Process Simulation Report 17
29.5 Equipment List 18
29.6 Block Flow Diagram (BFD) 20
29.7 Process Flow Diagrams (PFD) and Utility Flow Diagram (UFD) 22
29.8 Process Description 24
29.9 Process Philosophy Documents 25
29.10 Material Selection Report / Diagrams 28
29.11 Fluid List 33
29.12 Process Safeguarding Flow Diagrams (PSFD) 40
29.13 Piping & Instrumentation Diagrams (P&ID) 42
29.13.1 Introduction 42
29.13.2 Stages for P&IDs in Project 43
29.13.2.1 IFR – Issued For Review 43
29.13.2.2 IFH – Issued For Hazop 46
29.13.2.3 IFD Issue – Issued For Design 46
29.13.2.4 IFC – Issued For Construction 47
29.13.2.5 As Built P&IDs 47
29.13.3 Softwares used in P&IDs 62
29.13.4 Licensor P&IDs 62
29.13.5 Vendor P&IDs 63
29.13.6 Engineering guidelines for information in P&IDs 63
29.13.7 Representation of Equipments in P&ID 74
29.13.7.1 Pressure Vessels (Including Reactors and Columns) 74
29.13.7.2 Shell and Tube Heat Exchangers 78
29.13.7.3 Air-Cooled Heat Exchangers 82
29.13.7.4 Pumps 85
29.13.7.5 Fired Heaters, Boilers, Incinerators 93
29.13.7.6 Compressors and Blowers 94
29.13.7.7 Steam and Gas Turbine Drivers 94
29.13.7.8 Miscellaneous Equipment 94
29.13.8 Isolation 95
29.13.9 Instrumentation 101
29.13.10 Process Control 102
29.13.11 Electrical 103
29.13.12 Insulation, Tracing and Jacketing 103
29.13.13 Utility Connections 103
29.13.14 Unit Battery Limit Isolation 105
29.13.15 Symbols Normally used in P&IDs 105
29.13.16 Instrumentation Simplified and Detailed representation on P&IDs 120
29.13.17 Pressure relief Valves 122
29.13.18 Piping 123
29.13.19 Equipments Symbols 141
29.13.20 Typical Pump piping 165
29.13.21 Typical P&ID Representations 174
29.13.22 Piping Spec Breaks Typical Representations 201
29.13.23 Simplified and detail representation in P&IDs of motors 202
29.13.24 Representation of sample collectors in P&IDs 218
29.14 Equipment sizing calculations (static & rotating) 223
29.15 Process data sheets (PDS) 224
29.16 Instrumentation process data sheet (IPDS) 234
29.17 Relief and depressurising load summary 236
29.18 control narrative 238
29.19 A) Shutdown Logic Diagram 242
B) Cause and Effect Diagram 242
29.20 Utility summary / catalyst and chemical summary 244
29.21 Effluent and emissions summary 246
29.22 Line List 247
29.23 Tie-In List 249
29.24 Special Piping Item List (SPI List) 250
29.25 Operation and Maintenance (O&M) Manual 251
29.26 DP-DT diagram (Design Pressure – Design temperature) 255
Chapter 30 Table of Contents Page No.
30.1 Introduction 2
30.1.1 Related chapters of Handbook 2
30.2 Centrifugal Pumps 4
30.3 Metering pumps 7
30.4 Gear Pumps 9
30.5 Reciprocating Compressor 11
30.6 Centrifugal compressors 15
30.7 Screw compressors 17
30.8 Agitator 19
30.9 Fired Heaters 21
30.10 Water treatment plant – demineralization 29
30.11 Effluent treatment plant 31
30.12 Vacuum systems 34
30.13 Flare 36
30.14 Refrigeration units 37
30.15 Cooling tower 38
30.16 Boiler (smoke tube) 40
30.17 Air Cooled Heat Exchanger 42
30.18 Air Dryers 43
30.19 Plate & Frame Heat Exchangers 44
Chapter 31 Table of Contents Page No.
31.1 Introduction 3
31.2 Fire Safety Assessment Study (FSS or FERA) 3
31.3 Heat Radiation Study 3
31.4 Gas Dispersion Modelling Study 3
31.5 Environmental Protection Studies 4
31.6 Risk Assessment studies 4
31.7 Other Safety Studies 4
31.7.1 Hazid 4
31.7.2 Envid 4
31.7.3 Hazop 4
31.7.4 SIL 14
31.7.5 SimOPs 14
Chapter 32 Table of Contents Page No.
32.1 Introduction 4
32.1.1 Related references 4
32.2 Instrument & Control System – an Overview 4
32.2.1 Local Indicating Type Instruments 4
32.2.2 Remote Indicating Type Instruments 4
32.2.3 Instrument Control system 6
32.2.4 Control Room 8
32.3 Control Valves 8
32.3.1 Selection Criteria 9
32.3.2 Control Valve Sizing Criteria 10
32.3.3 Control Valve Data Sheet 11
32.3.4 Control Valve Selection Rules of Thumb 12
32.4 Process Instrumentation 16
32.4.1 Flow 16
32.4.2 Velocity Flowmeters 22
32.4.3 Inferential (differential pressure) 25
32.4.4 Positive Displacement Meters 34
32.4.5 Mass Flowmeters 40
32.5 Level Measurement 47
32.5.1 Level Sensor Selection 48
32.5.2 Types 50
32.5.3 Boiling & Cryogenic Fluids 62
32.5.4 Sludge, Foam, & Molten Metals 63
32.6 Temperature 64
32.7 Pressure Measurement Instrumentation 68
32.8 Specific Types of Control Systems 70
32.8.1 Process Controls 70
32.8.1.1 Flow Control 70
32.8.1.2 Level Control 71
32.8.1.3 Temperature Control 71
32.8.1.4 Pressure Controls 74
32.9 Alarm Systems 74
32.9.1 Direct Connected Alarms 74
32.9.2 Alarms from Transmitters 76
32.9.3 Alarms from DCS 76
32.10 Recording 76
32.11 Valves 79
32.12 Miscellaneous Systems, Loops and Hand Switching 80
32.13 Centrifugal Pump Control 85
32.14 Positive displacement pump control 85
32.15 Reciprocating Compressors Control Methods 86
32.16 Control Schemes for Screw Compressors 88
32.17 Control Schemes for Centrifugal Compressors 88
32.18 Distillation Column Control 93
32.18.1 Distillation Control Philosophy 95
32.18.2 Other possible disturbances 98
32.19 Column Control Fundamentals 99
32.20 The various types of distillation column control schemes 101
32.20.1 Atmospheric Column Control 102
32.20.2 Pressure Control 102
32.20.3 Temperature Control 120
32.20.4 Control of Column Top Composition 124
32.20.5 Feed Preheat Control 126
32.20.6 Reboiler and Steam Control to Column 128
32.20.7 Vapour Recompression 130
32.20.8 Distillation Column Control Examples 131
32.21 Constraint Control 136
32.22 Miscellaneous Controls 137
32.23 References 138
Chapter 33 Table of Contents Page No.
33.1 Introduction 3
33.1.1 Related References 3
33.2 Environments that typically require special materials 3
33.3 Classes of materials 4
33.4 Materials Selection Criteria 5
33.4.1 Material Selection in Process Units 6
33.4.2 Materials for General Process plant use 7
33.4.3 Common Environmental Considerations 14
33.4.4. Post Weld Heat Treating (PWHT) 24
33.4.5 Materials for Special Equipment 25
33.4.6 Temperature Considerations 27
33.4.7 Corrosion 28
33.4.8 Environmental Induced Attack 36
33.4.9 Relative Metallic Material Costs Comparison 44
33.5 Non-Metallic Materials 45
33.5.1 Plastics 45
33.6 Material of Construction 65
33.7 Material Selection Table 71
33.8 References 90
Chapter 34 Table of Contents Page No.
34.1 Introduction 2
Chapter 35 Table of Contents Page No.
35.1 Introduction 3
35.2 Rotating Equipment 4
Chapter 36 Table of Contents Page No.
36.1 Introduction 3
36.2 Definitions & Stages Involved 3
36.2.1 Definitions 3
36.2.2 Sequence of Activities 5
36.2.3 Management Issues 7
36.2.4 Technical Issues 7
36.2.5 Special Tip 7
36.3 Organogram for Startup 9
36.4 Precommissioning 10
36.5 Documentation Required by Process Engineer 11
36.5.1 Pre-Commissioning Procedures 12
36.5.2 Inspection and Testing 13
36.5.3 Clean Up Of Area 13
36.5.4 Site Preparation, Foundations and Structural Steel 13
36.5.5 Checking Plant against P&ID 13
36.5.6 Vessels and Tanks 14
36.5.7 Columns Inspection and Box Up 15
36.5.8 Heat Exchangers 16
36.5.9 Air Cooled Exchangers 16
36.5.10 Rotating Equipment 17
36.5.11 Electrical Motor Drivers 18
36.5.12 Pumps / Blowers 18
36.5.13 Compressors 19
36.5.14 Instrumentation (General) 19
36.5.15 Hydro Testing 19
36.5.16 Process Piping Flushing/Cleaning 21
36.5.17 Cleaning of lines and equipment 22
36.5.17.1 Flushing 22
36.5.17.2 Flushing Lines 23
36.5.17.3 Air Blowing 24
36.5.17.4 Dynamic Testing With Safe Fluids (Water Run) 24
36.5.17.5 Leak Testing 26
36.5.17.6 Leak Testing Procedure 26
36.5.17.7 Charging of Essential Utilities 27
36.6 Package Unit Pre-Commissioning 31
36.7 Pre-Commissioning of Electrical /Instrumentation Systems 31
36.8 Commissioning activities 31
36.9 Guarantee run 31
36.10 Budget allocation 32
36.10.1 Start Up Budget 32
36.10.2 Preliminary Estimate for Startup Costs 32
36.11 Time involved 34
36.11.1 Estimate for Startup Time 34
36.12 Checklists 34
36.12.1 Responsibility Matrix 34
36.13 Specific Procedures 40
36.14 Pre-Startup / Safety Review Checklist 49
36.15 Machinery Commissioning Checklist 53
36.16 References 56
Chapter 37 Table of Contents Page No.
37.1 Introduction 3
37.2 Flow Assurance Study 3
37.2.1 Flow Assurance consists of the following analyses 3
37.2.3 Applications 3
37.2.4 Software 3
37.2.5 Study results 4
37.2.6 Flow assurance – two separate but connected studies 4
37.2.6.1 Steady state flow assurance study 5
37.2.6.2 Transient state study includes the following scenarios 6
37.2.7 Design Data 7
37.2.8 Few Important Details 9
37.2.9 Surge analysis 9
37.2.9.1 Potential Surge Pressure Hazards 10
37.2.9.2 Pressure Wave Velocity 10
37.2.9.3 Surge Pressure Rise 14
37.2.9.4 Pressure Capability 15
37.2.9.5 Allowable Surge Pressure 15
37.2.9.6 Surge Mitigation Recommendations 16
37.3 Reliability, Availability and Maintainability Study (Ram Study) 22
37.3.1 Software used in RAM study 22
37.3.2 Software 23
37.3.3 Terms and definitions 23
37.3.4 Input Documents required for study 26
37.3.5 RAM Methodology 26
37.3.6 Reliability Data 26
37.3.7 Failure Rate Class Types 27
37.3.8 Failure Rate Pattern (“Bath Tub Curve”) 28
37.3.9 Maintainability 28
37.3.10 Availability 29
37.4 Multi Product Pipeline Batching Study 30
37.4.1 Types of Pipelines usages 30
37.4.2 Pipeline Batching 30
37.4.3 Units of measurement used in formulae 31
37.4.4 Terminology 31
37.4.5 Objective of a batching study 32
37.4.6 Basic Inputs Required for Study 32
37.4.7 Assumptions usually taken in study 32
37.4.8 Methodology 33
37.4.9 Case Study of Product Batching 38
37.5 References 55
Chapter 38 Table of Contents Page No.
38.1 Heat Exchanger Design Optimization & Specifications 3
38.1.1 General 3
38.2 Overview of TEMA and Selection Guidelines 3
38.2.1 Selection Guidelines – Type of Exchanger 3
38.2.2 Reboiler Selection Chart 9
38.2.2.1 Sizing of Reboiler 10
38.2.2.2 Fraction of Fluid Evaporated In Reboiler 20
38.3 S & T Heat Exchanger Optimization Guidance 20
38.3.1 Overview of TEMA 20
38.4 Heat Exchanger Design (Thermal Design) 24
38.4.1 Salient Points of Each Type of Heads and Shells 25
38.4.2 Program Capabilities 27
38.4.3 The Various Geometry Specifications 27
38.4.4 Calculation Modes 28
38.4.5 Data Entry into HTRI 29
38.4.6 Stream Definitions Summary 31
38.4.7 Output Interpretation 33
38.5 Examples of Optimized S & T Heat Exchangers 34
38.6 Optimization of Air Cooled Heat Exchangers 72
38.7 Examples of Optimized Air Cooled Heat Exchangers 80
38.8 References 155
Chapter 39 Table of Contents Page No.
39.1 Introduction 3
39.1.1 Related References 3
39.2 Isolation Philosophy 4
39.3 Equipment Sparing Philosophy 11
39.4 Emergency Shutdown and Depressurization Philosophy 16
39.5 Winterization Philosophy 22
39.6 Close & Open Drain Philosophy 24
Chapter 40 Calculation Templates: Table of Contents
Sr No Template Number Template Description
1 HCPE-MMP-0001 Three phase horizontal separator – bucket and weir
2 HCPE-MMP-0002 Flow orifice
3 HCPE-MMP-0003 PSV Relief scenario load calculation
4 HCPE-MMP-0004 Heating time calculation for agitated reactor
5 HCPE-MMP-0005 Flare Knock Out Drum
6 HCPE-MMP-0006 Flare Purge Gas
7 HCPE-MMP-0007 Agitated Reaction Vessel calculation (limpet coil)
8 HCPE-MMP-0008 Blow down orifice
9 HCPE-MMP-0009 Solar evaporation pond (free evaporation)
10 HCPE-MMP-0010 Solar evaporation pond (forced evaporation)
11 HCPE-MMP-0011 Gas / Liquid Control valve Cv calculation
12 HCPE-MMP-0012 Steam control valve Cv calculation
13 HCPE-MMP-0013 PSV sizing calculation
14 HCPE-MMP-0014 Gravity Oil Interceptor Separator sizing
15 HCPE-MMP-0015 Hot Oil Expansion Vessel Sizing calculation
16 HCPE-MMP-0016 Compressor Settle Out Pressure calculation
17 HCPE-MMP-0017 Shell & Tube Exchanger sizing calculation
18 HCPE-MMP-0018 Surge Pressure Calculation
19 HCPE-MMP-0019 Two phase pressure drop API 14E calculation
20 HCPE-MMP-0020 Gas pressure drop calculation
21 HCPE-MMP-0021 Liquid pressure drop calculation
22 HCPE-MMP-0022 API 2000 Tank Breathing calculation
23 HCPE-MMP-0023 Unit Conversion Calculation
24 HCPE-MMP-0024 Pressure-Temperature / ANSI B 16.5 # rating calculation
25 HCPE-MMP-0025 Material Selection Template
26 HCPE-MMP-0026 Atmospheric Storage Tank calculation
27 HCPE-MMP-0027 Dew Point Calculator
28 HCPE-MMP-0028 Fan Power Calculation
29 HCPE-MMP-0029 Cooling Tower calculation
30 HCPE-MMP-0030 Agitator Power calculation
31 HCPE-MMP-0031 Agitated Reaction Vessel calculation (jacket)
32 HCPE-MMP-0032 Oil Pipeline Batching Study calculation
33 HCPE-MMP-0033 Insulation Thickness calculation
34 HCPE-MMP-0034 Rupture Disc Sizing
35 HCPE-MMP-0035 Pipeline Heat Loss Calculation
36 HCPE-MMP-0036 Horizontal bullet volume
37 HCPE-MMP-0037 Separators (two-phase, three phase)
38 HCPE-MMP-0038 Centrifugal Pump Calculation sheet
39 HCPE-MMP-0039 Screw Pump Calculation sheet
40 HCPE-MMP-0040 Reciprocating Pump Calculation sheet
Chapter 41 Checklists: Table of Contents
Sr No Checklist Number Checklist Description
01 MMP-CKL-0001 Engineering start
02 MMP-CKL-0002 Feed Verification
03 MMP-CKL-0003 PFD
04 MMP-CKL-0004 Process Simulation
05 MMP-CKL-0005 General Property
06 MMP-CKL-0006 Heat & Material Balance
07 MMP-CKL-0007 P&ID
08 MMP-CKL-0008 S&T Thermal Design checklist in HTRI
09 MMP-CKL-0009 Design Safety Review
10 MMP-CKL-0010 Separator PDS
11 MMP-CKL-0011 Generic Data Sheet
12 MMP-CKL-0012 Compressor PDS
13 MMP-CKL-0013 Pump PDS
14 MMP-CKL-0014 Vessel PDS
15 MMP-CKL-0015 Column PDS
16 MMP-CKL-0016 Reflux Condenser
17 MMP-CKL-0017 Air Cooled Heat Exchanger Thermal Design
in HTRI
18 MMP-CKL-0018 Filters
19 MMP-CKL-0019 Flow Instruments
20 MMP-CKL-0020 Level Instrument
21 MMP-CKL-0021 Instrument Valve
22 MMP-CKL-0022 Analyser
23 MMP-CKL-0023 Pressure Instrument
24 MMP-CKL-0024 Relief Valve
25 MMP-CKL-0025 Temperature Instrument
Chapter 42 PROCESS DATA SHEETS: Table of Contents
Sr.No DATASHEET No. DESCRIPTION OF PDS
1 MMP-DSE-0001 Centrifugal Pump
2 MMP-DSE-0002 P D Pump
3 MMP-DSE-0003 Vacuum Pump
4 MMP-DSE-0004 Metering Pump
5 MMP-DSE-0005 Reciprocating Pump
6 MMP-DSE-0006 Reciprocating Compressor
7 MMP-DSE-0007 Screw Compressor
8 MMP-DSE-0008 Centrifugal Compressor
9 MMP-DSE-0009 Tank
10 MMP-DSE-0010 Pressure Vessel
11 MMP-DSE-0011 Reactor
12 MMP-DSE-0012 Column
13 MMP-DSE-0013 Column Internals
14 MMP-DSE-0014 Trays
15 MMP-DSE-0015 Packing
16 MMP-DSE-0016 Shell & Tube Heat Exchanger
17 MMP-DSE-0017 Air Cooled Heat Exchanger
18 MMP-DSE-0018 Plate Heat Exchanger
19 MMP-DSE-0019 Gas Turbine
20 MMP-DSE-0020 Turbo Expander
21 MMP-DSE-0021 Tank Agitator
22 MMP-DSE-0022 Tank Jet Mixing Eductor
23 MMP-DSE-0023 Spiral Type Heat Exchanger
24 MMP-DSE-0024 Double Pipe Exchanger
25 MMP-DSE-0025 Silo
26 MMP-DSE-0026 Gas Filter Coalescer
27 MMP-DSE-0027 Centrifuge
28 MMP-DSE-0028 Corrugated Plate Interceptor
29 MMP-DSE-0029 Gravity Separator
30 MMP-DSE-0030 Boiler
31 MMP-DSE-0031 Chemical Injection System
32 MMP-DSE-0032 Heatless Air Dryer
33 MMP-DSE-0033 Desanding Hydrocyclone
34 MMP-DSE-0034 Evaporator
35 MMP-DSE-0035 Fired Heater
36 MMP-DSE-0036 Liquid Filter Coalescer
37 MMP-DSE-0037 Process Sump
38 MMP-DSE-0038 Scraper launcher
39 MMP-DSE-0039 Cooling Tower
40 MMP-DSE-0040 DAF Separator
41 MMP-DSE-0041 Deareator
42 MMP-DSE-0042 Demineralisation Package
43 MMP-DSE-0043 Desuperheater
44 MMP-DSE-0044 Flare
45 MMP-DSE-0045 Filter
46 MMP-DSE-0046 Gas-Liquid Separator
47 MMP-DSE-0047 Induced Air Floatation Separator
48 MMP-DSE-0048 Pneumatic Conveying system
49 MMP-DSE-0049 Pressure Sand Filter
50 MMP-DSE-0050 Liq-Liq Extraction
51 MMP-DSE-0051 Flare Tip
52 MMP-DSE-0052 Injection Quill
53 MMP-DSE-0053 Silencer
54 MMP-DSE-0054 Static Mixer
55 MMP-DSE-0055 Eductor Mixer
56 MMP-DSE-0056 Marine Loading arms
57 MMP-DSE-0057 Steam Jet Ejector
58 MMP-DSE-0058 Sump Pit Ejector
59 MMP-DSE-0059 Truck Loading Arm
60 MMP-DSE-0060 Vibrating Screen
61 MMP-DSE-0061 Band Dryer
62 MMP-DSI-0100 Relief valve IPDS
63 MMP-DSI-0101 Analyzers IPDS
64 MMP-DSI-0102 Control Valve IPDS
65 MMP-DSI-0103 ESD Valve IPDS
66 MMP-DSI-0104 Level Instrument IPDS
67 MMP-DSI-0105 Pressure Instruments IPDS
68 MMP-DSI-0106 Temperature Instruments IPDS
69 MMP-DSI-0107 Restriction Orifice IPDS
70 MMP-DSI-0108 Rupture Discs
71 MMP-DSI-0109 Flame Arrestor
72 MMP-DSI-0110 MOV
73 MMP-DSI-0111 Breather valve
74 MMP-DSI-0112 Subsea isolation valve
110 MMP-DSP-0150 Butterfly Valve
111 MMP-DSP-0151 Strainer
112 MMP-DSP-0152 Steam Trap
113 MMP-DSP-0153 Strahman sampling valve
114 MMP-DSS-0200 Equipment List
115 MMP-DSS-0201 Fluid List
116 MMP-DSS-0202 Utility Summary
117 MMP-DSS-0203 Catalyst and Chemical Summary
118 MMP-DSS-0204 Effluent & Emission Summary
119 MMP-DSS-0205 Line List
120 MMP-DSS-0206 Relief Load summary
121 MMP-DSS-0207 Specialty Piping Item (SPI) List
122 MMP-DSS-0208 Strainer List
123 MMP-DSS-0209 Steam tracing Summary
124 MMP-DSS-0210 Battery Limit Summary
125 MMP-DSS-0211 Alarm & Trip Summary
126 MMP-DSS-0212 Cause and Effect Diagram
Chapter 43 Technical Bid Evaluation: Table of Contents
Sr No TBE Number Description of TBE
01 MMP-TBE-0001 Activated Carbon Filter Package
02 MMP-TBE-0002 Nitrogen Package
03 MMP-TBE-0003 Water Treatment Package
04 MMP-TBE-0004 Hot Oil Heater Package
05 MMP-TBE-0005 Rotary Kiln Incinerator Package
06 MMP-TBE-0006 Air Cooled Heat Exchanger
07 MMP-TBE-0007 API 610 centrifugal pump
08 MMP-TBE-0008 Compressed Air Package
09 MMP-TBE-0009 Coagulant & MMF Package
10 MMP-TBE-0010 Reverse Osmosis Package
11 MMP-TBE-0011 Ultra Filtration Package
Sr. No Chapter 44 Reference P&ID’s: Table of Contents
1 44.1 External floating roof tank
2 44.2 Fixed roof tank with agitator
3 44.3 Reverse Osmosis P&ID sheet 1
4 44.4 Reverse Osmosis P&ID sheet 2
5 44.5 Typical antiscalant and acid dosing tank / pumps for R O Unit
6 44.6 Reference P&ID – package item representation. Vendor will provide P & ID of system inside his package.
7 44.7 Typical Hazardous waste incinerator facility receipt tanks
8 44.8 Typical slurry receipt tank at hazardous incineration facility
9 44.9 Solids waste handling system at hazardous waste facility
10 44.10 Rotary Kiln Incinerator
11 44.11 NOx reactor and evaporative cooler as first Air Pollution control (APC) downstream of incinerator
12 44.12 Bag Filter and Venturi as second APC downstream of incinerator
13 44.13 Caustic scrubber as final APC in incinerator
14 44.14 Centrifugal 3-stage air compressor
15 44.15 Lube oil system for centrifugal air compressor of fig 44.14.
16 44.16 Simple agitated preparation vessel with pressure / vacuum water seals
17 44.17 Batch Reactor vessel
18 44.18 Additives section in batch polymer plant
19 44.19 Coalescer with bootleg facility
20 44.20 Three phase bucket and weir separator
21 44.21 Two phase separator (reflux drum)
22 44.22 Kettle type reboilers
23 44.23 Air cooled primary cooler with trim S&T exchanger downstream
24 44.24 U-tube exchanger
25 44.25 Sour water stripper
26 44.26 Vertical thermosyphon reboiler with condensate pot
27 44.27 Distillation column
28 44.28 Balanced draft fired heater
29 44.29 Fuel skid for heater of fig 44.28
30 44.30 Reciprocating compressor first stage
31 44.31 Reciprocating compressor second stage
32 44.32 Reciprocating compressor third stage
33 44.33 Cooling tower
34 44.34 Mechanical deaerator with vacuum pump
35 44.35 Reactor closed loop MEG system
36 44.36 Raw / Fire water storage and pumping
37 44.37 Finishing Bagging line Typical P&ID
38 44.38 Dry Additives P&ID
39 44.39 Bulk Storage Silo and transport P&ID
40 44.40 Pig Launcher P&ID
41 44.41 Pig Receiver P&ID

Sample Pages (Excerpts) Index Purchase Book